# Prophylactic Corticosteroid Use With Axicabtagene Ciloleucel in Patients With Relapsed/Refractory Large B-Cell Lymphoma: One-Year Follow-Up of ZUMA-1 Cohort 6

Olalekan O. Oluwole, MBBS, MPH<sup>1</sup>; Edouard Forcade, MD, PhD<sup>2</sup>; Javier Muñoz, MD, MS, MBA, FACP<sup>3</sup>; Sophie de Guibert, MD<sup>4</sup>; Julie M. Vose, MD, MBA<sup>5</sup>; Nancy L. Bartlett, MD<sup>6</sup>; Yi Lin, MD, PhD<sup>7</sup>; Abhinav Deol, MD<sup>8</sup>; Peter A. McSweeney, MBChB<sup>9</sup>; Andre H. Goy, MD<sup>10</sup>; Marie José Kersten, MD, PhD<sup>11</sup>; Caron A. Jacobson, MD, MMSc<sup>12</sup>; Umar Farooq, MD<sup>13</sup>; Monique C. Minnema, MD, PhD<sup>14</sup>; Catherine Thieblemont, MD, PhD<sup>15</sup>; John M. Timmerman, MD<sup>16</sup>; Patrick Stiff, MD<sup>17</sup>; Irit Avivi, MD<sup>18</sup>; Dimitrios Tzachanis, MD, PhD<sup>19</sup>; Jenny J. Kim, MD, MS<sup>20</sup>; Yan Zheng, MS<sup>20</sup>; Rhine R. Shen, PhD<sup>20</sup>; Saran Vardhanabhuti, PhD<sup>20</sup>; and Tom van Meerten, MD, PhD<sup>21</sup>

<sup>1</sup>Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; <sup>2</sup>CHU Bordeaux, Bordeaux, France; <sup>3</sup>Banner MD Anderson Cancer Center, Gilbert, AZ, USA; <sup>4</sup>Hématologie Clinique, CHU Rennes, Rennes, France; <sup>5</sup>University of Nebraska Medical Center, Omaha, NE, USA; <sup>6</sup>Washington University School of Medicine and Siteman Cancer Center, St Louis, MO, USA; <sup>7</sup>Mayo Clinic, Rochester, MN, USA; <sup>8</sup>Karmanos Cancer Center, Wayne State University, Detroit, MI, USA; <sup>9</sup>Colorado Blood Cancer Institute, Denver, CO, USA; <sup>10</sup>John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA; <sup>11</sup>Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands on behalf of HOVON/LLPC; <sup>12</sup>Dana-Farber Cancer Institute, Boston, MA, USA; <sup>13</sup>University of Iowa, Iowa City, IA, USA; <sup>14</sup>University Medical Center Utrecht, Utrecht, Netherlands, on behalf of HOVON/LLPC; <sup>15</sup>Université de Paris, Hôpital Saint-Louis, Hemato-Oncology, DMU HI, Paris, France; <sup>16</sup>UCLA David Geffen School of Medicine, Los Angeles, CA, USA; <sup>17</sup>Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; <sup>18</sup>Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; <sup>19</sup>Moores Cancer Center, UCSD, La Jolla, CA, USA; <sup>20</sup>Kite, a Gilead Company, Santa Monica, CA, USA; and <sup>21</sup>University Medical Center Groningen, Groningen, Netherlands, on behalf of HOVON/LLPC

### **Disclosures**

**Olalekan O. Oluwole:** consultancy or advisory role for Kite, Janssen, Pfizer, Novartis, and Curio Science; and honoraria and research funding from Kite.

### **Background**

- ZUMA-1 is the registrational Phase 1/2 study of axi-cel, an autologous anti-CD19 CAR T-cell therapy, in patients with refractory LBCL<sup>1,2</sup>
- In ZUMA-1 pivotal Cohorts 1+2
  - 83% ORR; 58% CR rate<sup>2</sup>
  - With 63.1 months median follow-up: 25.8 months median OS; 43% 5-year OS rate<sup>3</sup>
  - 13% Grade ≥3 CRS; 28% Grade ≥3 NEs1
- Management of CRS and NEs has been under evaluation to optimize safety outcomes
  - In safety management Cohort 4, earlier corticosteroid and/or tocilizumab use appeared to reduce Grade ≥3 CRS and NE rates, without affecting CAR T-cell expansion or ongoing response rates<sup>4</sup>
  - Cohort 6 evaluated the addition of prophylactic corticosteroids to the Cohort 4 toxicity management regimen in further reducing the incidence and severity of CRS and NEs<sup>5</sup>
- At a median follow-up of 8.9 months in Cohort 6 (n=40), no Grade ≥3 CRS was observed, a low rate of Grade ≥3 NEs (13%) was present, and response rates were high (95% ORR, 80% CR rate)<sup>5</sup>
- Here, we present a 1-year updated analysis of Cohort 6 supported by propensity score—based comparison of outcomes in Cohort 6 and Cohorts 1+2 to enable an accurate comparison of patients with highly similar characteristics across cohorts

Axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; CRS, cytokine release syndrome; LBCL, large B-cell lymphoma; NE, neurologic events; ORR, objective response rate; OS, overall survival.

<sup>1.</sup> Neelapu SS, et al. N Engl J Med. 2017;377:2531-2544. 2. Locke FL, et al. Lancet Oncol. 2019;20:31-42. 3. Jacobson CA, et al. ASH 2021. Poster #1764. 4. Topp M, et al. Br J Haematol. 2021;195:388-398. 5. Oluwole OO, et al. Br J Haematol. 2021;194:690-700.

### **ZUMA-1 Study Design**

| Original AE Management |                      |  |  |
|------------------------|----------------------|--|--|
| Phase 2 (n=101)        |                      |  |  |
| Cohort 1               | Cohort 2             |  |  |
| Refractory DLBCL       | Refractory PMBCL/TFL |  |  |
| (n=77)                 | (n=24)               |  |  |

| Revised AE Management |  |  |  |
|-----------------------|--|--|--|
| Phase 2 (n=40)        |  |  |  |
| <u>Cohort 6</u>       |  |  |  |
| R/R LBCL <sup>a</sup> |  |  |  |
| (n=40)                |  |  |  |

#### Key eligibility criteria

- Cohorts 1+2: No response to last chemotherapy or relapse
   ≤12 months post-ASCT
- Cohort 6: R/R LBCL after ≥2 lines of therapy

#### **Optional bridging therapy allowed in Cohort 6 only**

 Dexamethasone,<sup>b</sup> high-dose methylprednisolone + rituximab,<sup>c</sup> or bendamustine + rituximab<sup>d</sup>

#### **Conditioning regimen (all cohorts)**

 Cyclophosphamide 500 mg/m<sup>2</sup> + fludarabine 30 mg/m<sup>2</sup> for 3 days

#### **Axi-cel (all cohorts)**

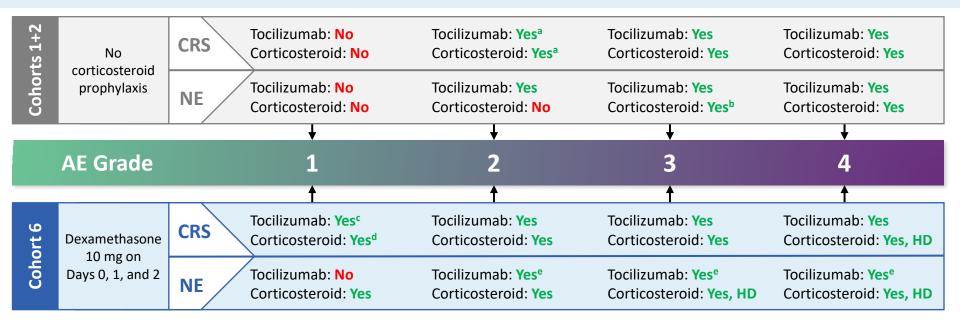
• 2×10<sup>6</sup> CAR+ T cells/kg<sup>e</sup>

#### **Cohort 6 primary endpoint**

Incidence and severity of CRS and NEs

<sup>&</sup>lt;sup>a</sup> Includes adult patients with DLBCL, PMBCL, TFL, and high-grade B-cell lymphoma after ≥2 systemic lines of therapy.

<sup>&</sup>lt;sup>b</sup> 20 to 40 mg/day or equivalent daily for 1 to 4 days, completed before conditioning chemotherapy.


<sup>&</sup>lt;sup>c</sup>Methylprednisolone 1 g/m<sup>2</sup> daily for 3 days + rituximab (375 mg/m<sup>2</sup> weekly), completed at least 7 days before conditioning chemotherapy.

d Bendamustine 90 mg/m² daily for 2 days + rituximab (375 mg/m² for 1 day), completed at least 14 days before conditioning chemotherapy.

<sup>&</sup>lt;sup>e</sup> Flat dose of 2×10<sup>8</sup> CAR+ T cells/kg for patients with body weight >100 kg.

AE, adverse event; ASCT, autologous stem cell transplantation; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CRS, cytokine release syndrome; DLBCL, diffuse large B-cell lymphoma; LBCL, large B-cell lymphoma; NE, neurologic event; PMBCL, primary mediastinal B-cell lymphoma; R/R, relapsed/refractory; TFL, transformed follicular lymphoma.

### **AE Management Strategy in ZUMA-1**



- Patients in Cohort 6 received once-daily oral dexamethasone 10 mg on Days 0 (before axi-cel), 1, and 2
- Corticosteroids and tocilizumab were started earlier in Cohort 6 than in Cohorts 1+2 for toxicity management<sup>1,2</sup>

<sup>1.</sup> Neelapu SS, et al. N Engl J Med. 2017;377:2531-2544. 2. Oluwole OO, et al. Br J Haematol. 2021;194:690-700.

<sup>&</sup>lt;sup>a</sup> Only in case of comorbidities or older age. <sup>b</sup> Only if no improvement with tocilizumab; use standard dose. <sup>c</sup> If no improvement after 24 hours of supportive care in Cohort 6. <sup>d</sup> If no improvement after 3 days.

e Only for Grade ≥2 NEs with concurrent CRS in Cohort 6.

AE, adverse event; axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; HD, high dose; Mgmt, management; NE, neurologic event.

# **Tocilizumab and Corticosteroid Guidelines for AE Management in Cohort 6**

| CRS Grade | Tocilizumab Dose <sup>a</sup>                                                                                            | Corticosteroid Dose <sup>a</sup>                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1         | If no improvement after 24 hours of supportive care, 8 mg/kg over 1 hour <sup>b</sup> ; repeat every 4-6 hours as needed | If no improvement after 3 days, dexamethasone 10 mg ×1                     |
| 2         | 8 mg/kg over 1 hour <sup>b</sup> ; repeat every 4-6 hours as needed                                                      | Dexamethasone 10 mg ×1                                                     |
| 3         | Per Grade 2                                                                                                              | Methylprednisolone 1 mg/kg IV twice daily or equivalent dexamethasone dose |
| 4         | Per Grade 2                                                                                                              | Methylprednisolone 1000 mg/d IV for 3 days                                 |
| NE Grade  | Tocilizumab Dose                                                                                                         | Corticosteroid Dose                                                        |
| 1         | N/A                                                                                                                      | Dexamethasone 10 mg ×1                                                     |
| 2         | Only in the case of concurrent CRS; 8 mg/kg over 1 hour; repeat every 4-6 hours as needed                                | Dexamethasone 10 mg 4 times/day                                            |
| 3         | Per Grade 2                                                                                                              | Methylprednisolone 1 g once daily                                          |
| 4         | Per Grade 2                                                                                                              | Methylprednisolone 1 g twice daily                                         |

<sup>&</sup>lt;sup>a</sup>Therapy to be tapered on improvement of symptoms at investigator's discretion. <sup>b</sup> Not to exceed 800 mg. AE, adverse event; CRS, cytokine release syndrome; IV, intravenous; N/A, not applicable; NE, neurologic event.

### **Analyses and Follow-Up Time**

#### 1-Year Analysis

#### **Data Cutoff Dates**

- Cohorts 1+2¹: Aug 11, 2017
- Cohort 6: Dec 16, 2020

#### **Median Follow-Up Times**

- Cohorts 1+2<sup>1</sup>: 15.4 months
- Cohort 6: 14.9 months

# **Exploratory Propensity Score Analysis**

- Propensity score—matched comparisons<sup>2</sup> were performed to compare clinical safety, efficacy, and PK profiles of patients in Cohort 6 and Cohorts 1+2 after balancing for known baseline disease characteristics
  - Tumor burden
  - IPI score
  - No. of prior lines of chemotherapy
  - Disease stage
  - LDH level
- Propensity score matching was used to select matching patient subgroups from Cohorts 1+2 and Cohort 6

<sup>1.</sup> Neelapu SS, et al. *N Engl J Med*. 2017;377:2531-2544. 2. Rosenbaum PR, Rubin DB. *Biometrika*. 1983;70:41-55. IPI, International Prognostic Index; LDH, lactate dehydrogenase; PK, pharmacokinetic.

### **Cohort 6: Patient Disposition and Baseline Characteristics**

- As of December 16, 2020, 40 patients with relapsed/refractory LBCL were treated with axi-cel, and all 40 were eligible for efficacy and safety analyses
- The median patient age was 64.5 years (range, 37-85 years; ≥65 years, 50%);
   55% of patients had ECOG performance status score of 1, 65% had stage III or IV disease, and 38% had received ≥3 prior therapies

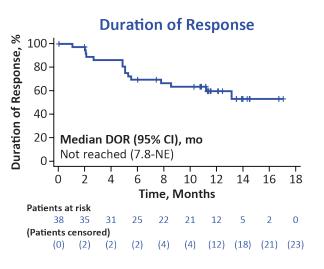
# Primary Endpoint: Incidence and Severity of CRS and Neurologic Events

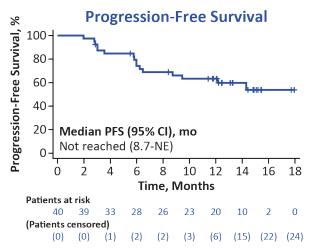
|                                    | Cohort 6    |
|------------------------------------|-------------|
|                                    | (N=40)      |
| CRS, n (%)                         | 32 (80)     |
| Worst Grade 1                      | 14 (35)     |
| Worst Grade 2                      | 18 (45)     |
| Worst Grade ≥3                     | 0 (0)       |
| Median time to onset (range), days | 5 (1–15)    |
| Median duration (range), days      | 4 (1–11)    |
| Neurologic event, n (%)            | 23 (58)     |
| Worst Grade 1                      | 10 (25)     |
| Worst Grade 2                      | 7 (18)      |
| Worst Grade ≥3                     | 6 (15)      |
| Median time to onset (range), days | 6 (2–162)   |
| Median duration (range), days      | 19 (1–438°) |

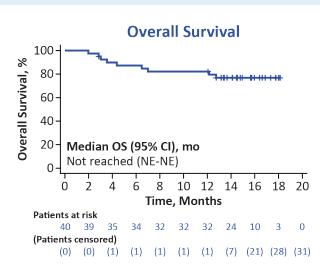
- No Grade ≥3 CRS occurred in Cohort 6
- Grade ≥3 neurologic events were reported in 15% of patients

Severity of CRS and neurologic events were graded per Lee et al criteria<sup>1</sup> and Common Terminology Criteria for Adverse Events version 4.03, respectively. 1. Lee DW, et al. *Blood.* 2014;124:188-195.

<sup>&</sup>lt;sup>a</sup> Duration is defined as the end date of the last neurologic event minus the onset date of the first neurologic event +1. The maximum value is due to a late onset neurologic event that occurred on Day 441 and resolved on Day 442; if not for this late event, the maximum duration would be 79 days as the patient's second to last neurologic event ended on Day 83 (lasted 3 days).


CRS, cytokine release syndrome.

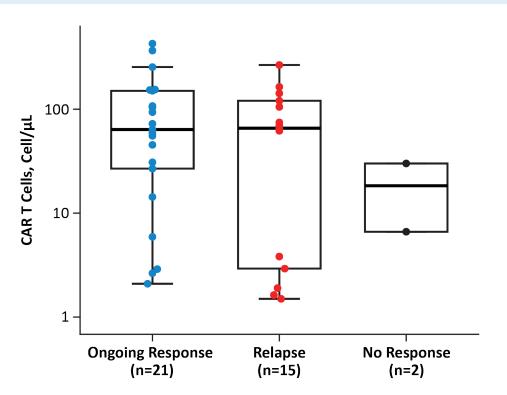

### Safety Update Since the Previous Cohort 6 Analysis<sup>1</sup>


- No new cases of CRS
- Four new axi-cel—related neurologic events in 2 patients
  - Patient 1: Grade 2 mental status changes and seizure-like phenomena both on Day 441 (duration, 2 days and 1 day, respectively)
  - Patient 2: Grade 1 dementia (occurred on Day 93 but was reported late; duration, 277 days) and Grade 5 toxic encephalopathy on Day 369 (resultant from a Grade 4 event that started on Day 351)
    - Investigator believed that a mild case of dementia may have predated the study
    - Workup was limited on the Grade 5 AE due to family refusal for diagnostic testing and autopsy; however, magnetic
      resonance imaging showed leukoencephalopathy but was not confirmed with lumbar puncture. The investigator
      suspected that the outcome may have resulted from an opportunistic infection due to prolonged immunosuppression
- Two new infections of Grade 2 pneumonia on Day 474 (resolved on Day 479; unrelated to axi-cel) and Grade 1 bronchitis on Day 459 (resolved on Day 459; related to axi-cel)
- One death due to progressive disease

1. Oluwole OO, et al. *Br J Haematol*. 2021;194:690-700. AE, adverse event; axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome.

# **Duration of Response, Progression-Free Survival, and Overall Survival**








- Median DOR, PFS, and OS were not reached
- KM estimates of the 12-mo DOR, PFS, and OS rates were 60%, 63%, and 82%, respectively
- The investigator-assessed ORR remained 95% (80% CR rate) with a median follow-up of 14.9 months
  - At data cutoff, 21 patients (53%) were in ongoing response

CR, complete response; DOR, duration of response; KM, Kaplan-Meier; NE, not estimable; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.

# **Associations Between Peak CAR T-Cell Levels and Response at 12 Months**



- Median peak CAR T-cell levels were comparably high in patients with ongoing response and relapse (64 cells/μL [n=21] and 66 cells/μL [n=15], respectively) at 12 months and considerably lower in nonresponders (18 cells/μL [n=2])
  - A similar trend was observed with CAR T-cell expansion by area under the curve from Day 0 to 28

CAR T cells were quantified using quantitative polymerase chain reaction. CAR, chimeric antigen receptor.

# **Propensity Score Matching Analysis: Baseline Characteristics**

- In total, 32 matched patients each in Cohort 6 and Cohorts 1+2 were identified in propensity score matching analysis<sup>1</sup>
  - Eight patients from Cohort 6 were not included due to nonavailability of matched patients in Cohorts 1+2
- Baseline characteristics were comparable between the 32 matched patients<sup>1</sup>

### **Propensity Score Comparison of Outcomes: Efficacy**

|                                               | Cohorts 1+2<br>Overall<br>(N=101) | Cohort 6<br>Overall<br>(N=40) | Cohorts 1+2<br>After Matching<br>(n=32) | Cohort 6<br>After Matching<br>(n=32ª) |
|-----------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|
| Objective response, n (%)                     | 84 (83)                           | 38 (95)                       | 30 (94)                                 | 30 (94)                               |
| Complete response, n (%)                      | 59 (58)                           | 32 (80)                       | 25 (78)                                 | 24 (75)                               |
| Ongoing response at data cutoff date, b n (%) | 42 (42)                           | 21 (53)                       | 19 (59)                                 | 15 (47)                               |
| Median duration of response (95% CI), mo      | 11.1 (3.9, NE)                    | NR (7.8, NE)                  | NR (8.1, NE)                            | 13.1 (5.5, NE)                        |
| KM 12-month (95% CI), %                       | 49 (37 <i>,</i> 59)               | 60 (41, 74)                   | 65 (45, 80)                             | 56 (36, 72)                           |
| Median progression-free survival (95% CI), mo | 5.9 (3.3, NE)                     | NR (8.7, NE)                  | NR (5.6, NE)                            | 14.3 (6.5, NE)                        |
| KM 12-month (95% CI), %                       | 44 (34, 54)                       | 63 (46, 77)                   | 61 (42, 76)                             | 61 (41, 76)                           |
| Median overall survival (95% CI), mo          | NR (12.8, NE)                     | NR (NE, NE)                   | NR (15.4, NE)                           | NR (NE, NE)                           |
| KM 12-month (95% CI), %                       | 60 (50, 69)                       | 82 (66, 91)                   | 81 (63, 91)                             | 78 (59, 89)                           |

 Clinical efficacy remained comparable between patients in Cohort 6 and Cohorts 1+2 before and after propensity score—based matching

<sup>&</sup>lt;sup>a</sup> Eight patients were excluded due to nonavailability of matched patients in the pivotal cohorts. <sup>b</sup> Represents the number of patients in response at the data cutoff date among all treated patients. KM, Kaplan-Meier; NE, not estimable; NR, not reached.

### **Propensity Score Comparison of Outcomes: Safety**

|                                                      | Cohorts 1+2<br>Overall<br>(N=101) | Cohort 6<br>Overall<br>(N=40) | Cohorts 1+2<br>After Matching<br>(n=32) | Cohort 6<br>After Matching<br>(n=32ª) |
|------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|
| CRS                                                  |                                   |                               |                                         |                                       |
| Worst Grade ≥2, n (%)                                | 57 (56)                           | 18 (45)                       | 19 (59)                                 | 15 (47)                               |
| Worst Grade ≥3, n (%)                                | 12 (12)                           | 0                             | 4 (13)                                  | 0                                     |
| Median time to onset of any grade CRS (Q1, Q3), days | 2 (2, 3)                          | 5 (4, 6)                      | 2 (2, 4)                                | 5 (4, 6)                              |
| NEs                                                  |                                   |                               |                                         |                                       |
| Worst Grade ≥2, n (%)                                | 43 (43)                           | 13 (33)                       | 12 (38)                                 | 13 (41)                               |
| Worst Grade ≥3, n (%)                                | 29 (29)                           | 6 (15)                        | 7 (22)                                  | 6 (19)                                |
| Median time to onset of any grade NE (Q1, Q3), days  | 5 (3, 7)                          | 6 (5, 9)                      | 6 (3, 7)                                | 6 (5, 8)                              |
| Median time to onset of Grade ≥3 NE (Q1, Q3), days   | 7 (5, 7)                          | 12 (6, 30)                    | 7 (6, 11)                               | 12 (6, 30)                            |
| Infections                                           |                                   |                               |                                         |                                       |
| Worst any grade, n (%)                               | 37 (37)                           | 20 (50)                       | 12 (38)                                 | 15 (47)                               |
| Worst Grade ≥3, n (%)                                | 23 (23)                           | 8 (20)                        | 6 (19)                                  | 8 (25) <sup>b</sup>                   |

- Incidence of Grade ≥3 CRS was lower in Cohort 6 compared with Cohort 1+2 before and after PSM
- Median time to onset of any-grade CRS was delayed in Cohort 6 versus Cohorts 1+2 before and after PSM
- Median time to onset of Grade ≥3 NEs appeared to be delayed in Cohort 6 versus Cohorts 1+2 before and after PSM

Axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; NE, neurologic event; PSM, propensity score—based matching; Q, quartile.

<sup>&</sup>lt;sup>a</sup> Eight patients were excluded due to nonavailability of matched patients in the pivotal cohorts. <sup>b</sup> Worst Grade 4 or 5 infections occurred in 3 patients (patient 1: Grade 4 sepsis [unrelated to treatment]; patient 2: Grade 4 human herpesvirus 6 encephalitis [related to conditioning chemotherapy] and Grade 5 urosepsis [unrelated to treatment]; and patient 3: Grade 4 *Aspergillus* infection and respiratory tract infection [related to conditioning chemotherapy and axi-cel]).

## **Propensity Score Comparison of Outcomes: Corticosteroid and Tocilizumab Use**

|                                                                                | Cohorts 1+2<br>Overall<br>(N=101) | Cohort 6<br>Overall<br>(N=40) | Cohorts 1+2<br>After Matching<br>(n=32) | Cohort 6<br>After Matching<br>(n=32ª) |
|--------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|
| Cumulative cortisone-equivalent corticosteroid dose (including prophylaxis), n | 25                                | 40                            | 6                                       | 32                                    |
| Median (Q1, Q3), mg                                                            | 6390 (2817, 15760)                | 1252 (939, 6291)              | 7418 (2504, 11579)                      | 1252 (939, 6604)                      |
| Cumulative tocilizumab use, n                                                  | 43                                | 23                            | 11                                      | 19                                    |
| Peak median (Q1, Q3), mg                                                       | 1300 (800, 1800)                  | 1000 (700, 1760)              | 1339 (772, 3310)                        | 1000 (600, 1680)                      |

- Median cumulative corticosteroid dose including prophylaxis was ≈6-fold lower in Cohort 6 versus Cohorts 1+2 (1252 mg versus 7418 mg, respectively) after matching
- Although more patients in Cohort 6 versus Cohorts 1+2 required tocilizumab after matching, median peak cumulative tocilizumab dose was lower in Cohort 6 versus Cohorts 1+2 (1000 mg versus 1339 mg, respectively)

<sup>&</sup>lt;sup>a</sup> Eight patients were excluded due to nonavailability of matched patients in the pivotal cohorts. Q, quartile.

# Propensity Score Comparison of CAR T-Cell and Cytokine Levels

|                                | Cohorts 1+2<br>Overall | Cohort 6<br>Overall | Cohorts 1+2 After Matching | Cohort 6 After Matching |
|--------------------------------|------------------------|---------------------|----------------------------|-------------------------|
| Median (Q1, Q3)                | (N=101)                | (N=40)              | (n=32)                     | (n=32ª)                 |
| Peak CAR T-cell levels         |                        |                     |                            |                         |
| CAR T-cell expansion, cells/μL | 38 (15, 83)            | 64 (6, 131)         | 43 (14, 107)               | 65 (18, 146)            |
| Peak cytokine levels           |                        |                     |                            |                         |
| IFN-γ, pg/mL                   | 477 (196, 1097)        | 208 (87, 446)       | 481 (120, 1096)            | 227 (103, 424)          |
| IL-2, pg/mL                    | 22 (10, 38)            | 8 (3, 23)           | 23 (10, 58)                | 8 (3, 16)               |
| GM-CSF, pg/mL                  | 7 (2, 16)              | 2 (2, 5)            | 9 (2, 21)                  | 2 (2, 4)                |
| Ferritin, ng/mL                | 3001 (1326, 6683)      | 904 (489, 1529)     | 2312 (1225, 4777)          | 809 (489, 1529)         |
| CRP, mg/L                      | 214 (141, 353)         | 76 (39, 136)        | 175 (124, 345)             | 78 (44, 131)            |

 Peak CAR T-cell levels were comparable and peak inflammatory biomarkers associated with CAR T-cell treatment-related AEs, including IFN-γ, IL-2, GM-CSF, and ferritin, were lower in Cohort 6 versus Cohorts 1+2 before and after propensity score matching, supporting clinical outcomes

<sup>&</sup>lt;sup>a</sup> Eight patients were excluded due to nonavailability of matched patients in the pivotal cohorts.
CAR, chimeric antigen receptor; CRP, C-reactive protein; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon, IL, interleukin; Q, quartile.

### **Conclusions**

- With ≥1-year follow-up for ZUMA-1 Cohort 6, prophylactic and earlier corticosteroid and/or tocilizumab intervention for toxicity management continued to demonstrate potential to improve the benefit/risk profile of axi-cel with no negative impact on pharmacokinetics and/or efficacy outcomes
- Although limited by retrospective and cross-cohort comparisons, findings were corroborated by propensity score—based matching analysis versus pivotal Cohorts 1+2
- Overall, these findings suggest that the Cohort 6 toxicity management strategy can improve long-term safety of axi-cel in relapsed/refractory LBCL, without compromising the durability of responses

### **Acknowledgments**

- The patients, families, friends, and caregivers
- The study investigators, coordinators, and health care staff at each study site
- Medical writing support was provided by Ashley Skorusa, PhD, of Nexus Global Group Science LLC, funded by Kite, a Gilead Company
- These data were previously presented at the 2021 Annual Meeting of the American Society of Hematology<sup>1</sup>