Superiority of Axicabtagene Ciloleucel in Second-Line Large B-Cell Lymphoma in the Elderly

Tom van Meerten, MD, PhD¹; Jason R. Westin, MD, MS, FACP²; Frederick L. Locke, MD³; Olalekan O. Oluwole, MBBS, MPH⁴; Michael Dickinson MBBS, DMEdSc⁵; Armin Ghobadi, MD⁶; Mahmoud Elsawy, MD, MSc⁷; David B. Miklos, MD, PhD⁸; Matthew Ulrickson, MD⁹; Miguel-Angel Perales, MD¹⁰; Umar Farooq, MD¹¹; Luciano Wannesson, MD¹²; Lori A. Leslie, MD¹³; Marie José Kersten, MD, PhD¹⁴; Caron A. Jacobson, MD, MMSc¹⁵; John M. Pagel, MD, PhD, DSc¹⁶; Gerald Wulf, MD, PhD¹⁷; Patrick Johnston, MD, PhD¹⁸; Aaron P. Rapoport, MD¹⁹; Leo I. Gordon, MD²⁰; Yin Yang, MD, MS²¹; Andrew Peng, MS²¹; Linqiu Du²¹; Jina Shah, MD, MPH²¹; Marco Schupp, MD²¹; Paul Cheng, MD, PhD²¹; Christina To, MD²¹; and Anna Sureda, MD, PhD²²

¹University Medical Center Groningen, Groningen, The Netherlands, on behalf of HOVON / LLPC; ²The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Moffitt Cancer Center, Tampa, FL, USA; ⁴Vanderbilt University Cancer Center, Nashville, TN, USA; ⁵Peter MacCallum Cancer Centre, Royal Melbourne Hospital and the University of Melbourne, Melbourne, Victoria, Australia; ⁶Washington University School of Medicine, St Louis, MO, USA; ⁷Division of Hematology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia; ⁸Stanford University School of Medicine, Stanford, CA, USA; ⁹Banner MD Anderson Cancer Center, Gilbert, Arizona, USA; ¹⁰Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹¹University of Iowa, Iowa City, IA, USA; ¹²Istituto Oncologico della Svizzera Italiana, Bellinzona, Switzerland; ¹³John Theurer Cancer Center, Hackensack, NJ, USA; ¹⁴Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, on behalf of HOVON / LLPC; ¹⁵Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁶Swedish Cancer Institute, Seattle, WA, USA; ¹⁷University Medicine Göttingen, Germany; ¹⁸Mayo Clinic, Rochester, Minnesota, USA; ¹⁹University of Maryland School of Medicine and Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; ²⁰Northwestern University Feinberg School of Medicine, Chicago, IL, USA; ²¹Kite, a Gilead Company, Santa Monica, CA, USA; and ²²Institut Català d'Oncologia-Hospitalet, Barcelona, Spain

Disclosures

Tom van Meerten: honoraria from Kite, and consultancy or advisory role for Janssen.

Background

- Axi-cel is an autologous anti-CD19 chimeric antigen receptor T-cell therapy approved for the treatment of adult patients with R/R LBCL after ≥2 lines of systemic therapy
- A minority of patients with R/R LBCL ultimately receive definitive therapy with HDT-ASCT due to low fitness or intolerability/lack of response to platinum-based salvage chemotherapy¹
- The median age at LBCL diagnosis is 66 years, and age can be a determining factor in the decision to use curative therapy²
- For these reasons, new treatment options are needed, particularly among elderly patients
- ZUMA-7 (NCT03391466) is the first randomized, global, multicenter Phase 3 study of axi-cel versus SOC as second-line treatment in patients with R/R LBCL
- In ZUMA-7, axi-cel significantly improved EFS compared with second-line SOC in R/R LBCL (HR, 0.398, P<0.0001; median 8.3 vs 2 months, respectively; 24-month EFS rate: 41% vs 16%, respectively; 24.9-month median follow-up)³

Program OS08-05

• Here, we present the safety and efficacy outcomes for ZUMA-7 patients aged ≥65 years

^{1.} Sehn LH, et al. *N Engl J Med.* 2021;384:842-858. 2. Di M, et al. *Oncologist*. 2021;26:120-132. 3. Locke FL, et al. *N Engl J Med*. 2021;386(7):640-654. Axi-cel, axicabtagene ciloleucel; EFS, event-free survival; HDT-ASCT, high-dose chemotherapy and autologous stem cell transplantation; HR, hazard ratio; LBCL, large B-cell lymphoma; R/R, relapsed/refractory; SOC, standard of care.

ZUMA-7 Study Schema and Endpoints

^a Refractory disease was defined as no CR to 1L therapy; relapsed disease was defined as CR followed by biopsy-proven disease relapse <12 months from completion of 1L therapy. ^b Axi-cel patients underwent leukapheresis followed by conditioning chemotherapy with cyclophosphamide (500 mg/m²/day) and fludarabine (30 mg/m²/day) 5, 4, and 3 days before receiving a single axi-cel infusion (target intravenous dose, 2×10⁶ CAR T cells/kg). ^c Protocol-defined SOC regimens included R-GDP, R-DHAP, R-ICE, or R-ESHAP. ^d EFS was defined as time from randomization to the earliest date of disease progression per Lugano Classification,² commencement of new lymphoma therapy, or death from any cause.

1. Swerdlow SH, et al. Blood. 2016;127:2375-2390. 2. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

1L, first-line; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; EFS, event-free survival; HDT-ASCT, high-dose chemoimmunotherapy and autologous stem cell transplantation; LBCL, large B-cell lymphoma; LTFU, long-term follow-up; ORR, objective response rate; OS, overall survival; PR, partial response; PRO, patient-reported outcome; R/R, relapsed/refractory; sAAIPI, second-line age-adjusted International Prognostic Index; SOC, standard of care.

van Meerten et al

EBMT 2022 Program OS08-05

Methods

- The primary endpoint was EFS, defined as time from randomization to the earliest date of disease progression per Lugano Classification,¹ commencement of new lymphoma therapy, or death from any cause
- Statistical testing of primary and key secondary endpoints was conducted hierarchically
 - Given statistically significant improvement in EFS, ORR was tested and given statistically significant improvement, OS was tested (interim analysis)
- Multivariate analyses were conducted to examine efficacy in treatment with axi-cel compared with SOC after adjusting for multiple covariates (treatment, gender, disease type, molecular subgroup, lactate dehydrogenase, tumor burden, and age)
- The present analysis of outcomes in patients aged ≥65 years was a prespecified subgroup analysis

^{1.} Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

Axi-cel, axicabtagene ciloleucel; EFS, event-free survival; ORR, objective response rate; OS, overall survival; SOC, standard of care.

ZUMA-7 Disposition for Patients ≥65 Years of Age

 The subgroup analysis of patients aged ≥65 years included 109 patients (N=51 and N=58 patients in the axi-cel and SOC arms, respectively)

 Axi-cel was successfully manufactured for all patients who underwent leukapheresis

Axi-cel, axicabtagene ciloleucel; HDT-ASCT; high-dose chemoimmunotherapy and autologous stem cell transplantation; SOC, standard of care.

EBMT 2022 Program OS08-05

Baseline Characteristics of Patients ≥65 Years of Age

Characteristic	Axi-Cel	SOC	Overall
	N=51	N=58	N=109
Median age (range), years	70 (65-80)	69 (65-81)	69 (65-81)
Sex, male, n (%)	28 (55)	39 (67)	67 (61)
Disease stage III-IV, n (%)	42 (82)	44 (76)	86 (79)
sAAIPI of 2-3, ^a n (%)	27 (53)	18 (31)	45 (41)
Response to 1L therapy, ^a n (%)			
Primary refractory	37 (73)	39 (67)	76 (70)
Relapse ≤12 months of 1L therapy	14 (27)	19 (33)	33 (30)
Disease type per investigator, n (%)			
DLBCL not specified	27 (53)	40 (69)	67 (61)
T-cell/histiocyte-rich LBCL	0 (0)	1 (2)	1 (1)
Large cell transformation from follicular lymphoma	7 (14)	9 (16)	16 (15)
HGBL with/without MYC and BCL2 and/or BCL6 rearrangement	17 (33)	8 (14)	25 (23)
Elevated LDH level ^b	31 (61)	24 (41)	55 (50)

^a As reported by investigator by Interactive Voice/Web Response System. ^bLDH level greater than upper limit of normal per local laboratory reference range.

1L, first-line; axi-cel, axicabtagene ciloleucel; DLBCL, diffuse large B-cell lymphoma; HGBL, high-grade B-cell lymphoma; LBCL, large B-cell lymphoma; LDH, lactate dehydrogenase; sAAIPI, second-line age-adjusted International Prognostic Index; SOC, standard of care.

Primary Endpoint in Patients ≥65 Years of Age

 Multivariate analyses showed similar EFS results when adjusting for differences in baseline characteristics (HR, 0.23, P<0.0001)

Axi-cel, axicabtagene ciloleucel; EFS, event-free survival; HR, hazard ratio; NE, not evaluable; SOC, standard of care.

Objective Response Rate in Patients ≥65 Years of Age

• ORR was higher with axi-cel versus SOC (descriptive P<0.0001) and CR rate of the axi-cel arm was over double that of the SOC arm (75% vs 33%, respectively)

^aNE: In the SOC arm, there was 1 patient with undefined disease and 4 who did not have response assessments done. Axi-cel, axicabtagene ciloleucel; CR, complete response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease; SOC, standard of care.

Overall Survival in Patients ≥65 Years of Age (Evaluated as an Interim Analysis)

• In the SOC arm, 33 (57%) patients received subsequent cellular immunotherapy (off protocol)

Axi-cel, axicabtagene ciloleucel; HR, hazard ratio; NE, not evaluable; NR, not reached; OS, overall survival; SOC, standard of care.

Overall Safety Profile in Patients ≥65 Years of Age

	Axi-C n=49	el 9	S n:	OC =55			
Adverse Events, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Reason for Death	Axi-Cel n=49	SOC n=55
Any AE ^a	49 (100)	46 (94)	55 (100)	45 (82)	Progressive disease	19 (39)	20 (36)
Pyrexia	47 (96)	4 (8)	14 (25)	0 (0)		15 (35)	20 (30)
Neutropenia ^b	39 (80)	39 (80)	24 (44)	24 (44)	Grade 5 AEs during	1 (2) ^e	1 (2) ^f
Nausea	23 (47)	1 (2)	37 (67)	3 (5)	reporting period		
Anemia	22 (45)	19 (39)	32 (58)	25 (45)	Definitive therapy-	0 (0)	1 (2) ^f
Thrombocytopenia ^c	21 (43)	14 (29)	37 (67)	25 (64)	related mortality		
Leukopenia ^d	19 (39)	18 (37)	10 (18)	10 (18)	Othor	1 (2)	5 (9)
Fatigue	17 (35)	2 (4)	31 (56)	1 (2)	Other*	1 (2)	
Any serious AE	29 (59)	25 (51)	26 (47)	23 (42)			

^a Included are AEs of any grade occurring in ≥40% of patients in the overall population. ^b Neutropenia refers to the combined preferred terms of neutropenia and neutrophil count decreased. ^c Thrombocytopenia refers to the combined preferred terms of neutropenia and neutrophil count decreased. ^e Due to COVID-19. ^f Due to cardiac arrest. ^g Other reasons for death included natural progression from prior subdural hematoma (n=1) in the axi-cel arm and COVID-19 (n=2), cardiopulmonary arrest (n=1), urosepsis (n=1), and sepsis (n=1) in the SOC arm.

EBMT 2022

AE, adverse event; axi-cel, axicabtagene ciloleucel; SOC, standard of care.

Rates of CRS and Neurologic Events in Patients ≥65 Years of Age

	Axi-Cel n=49		SOC n=55		
Parameter	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
CRS, n (%)ª	48 (98)	4 (8)	-	-	
CRS management, ^b n (%)					
Tocilizumab	33 (67) -				
Corticosteroids	14 (29) -				
Vasopressors	3 (6) -				
Median time to onset, days	3		-		
Median duration of events, days	8		-		
Neurologic event, n (%) ^c	32 (65)	13 (27)	14 (25)	1 (2)	
Management with corticosteroids, ^b n (%)	22 (45)		0 (0)		
Median time to onset, days	7		26		
Median duration of events, days	9		39		

^a CRS was graded according to Lee et al.^{1,b} Toxicity management followed ZUMA-1 pivotal cohorts. ^c Neurologic events were identified per prespecified search list based on methods used in the blinatumomab registrational study.²

EBMT 2022

1. Lee DW, et al. *Blood*. 2014;124:188-195. 2. Topp MS, et al. *Lancet Oncol*. 2015;16:57-66.

Axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; SOC, standard of care.

Conclusions

- Axi-cel demonstrated superiority over second-line SOC in patients ≥65 years, despite the greater frequency of high-risk features in the axi-cel arm, with
 - >8-fold improvement in median EFS (21.5 months vs 2.5 months, respectively; P<0.0001)
 - >3-fold improvement in estimated 24-month EFS rate
 - Over double the CR rate
 - Almost triple the proportion of patients receiving definitive therapy
- OS, evaluated as a preplanned interim analysis, was prolonged in the axi-cel arm compared with the SOC arm
- Axi-cel had a manageable safety profile that was consistent with previous studies and real-world experience, regardless of age^{1,2}
- Axi-cel is an effective second-line therapy for elderly patients with R/R LBCL

^{1.} Neelapu SS, et al. *N Engl J Med.* 2017;377:2531-2544. 2. Locke FL, et al. *Lancet Oncol.* 2019;20:31-42. Axi-cel, axicabtagene ciloleucel; EFS, event-free survival; LBCL, large B-cell lymphoma; OS, overall survival; R/R, relapsed/refractory; SOC, standard of care.

Acknowledgments

- The patients, families, friends, and caregivers
- The entire ZUMA-7 study team of investigators, coordinators, and health care staff at each study site
- Medical writing support was provided by Jennifer Yang, PhD of Nexus Global Group Science LLC, funded by Kite
- All employees of Kite involved over the course of the study for their contributions
- These data were previously presented at the 2022 European CAR T-cell Meeting¹

ZUMA-7 Global Phase 3 Clinical Trial Sites

1. van Meerten T, et al. EU CAR T 2022. Poster #54.