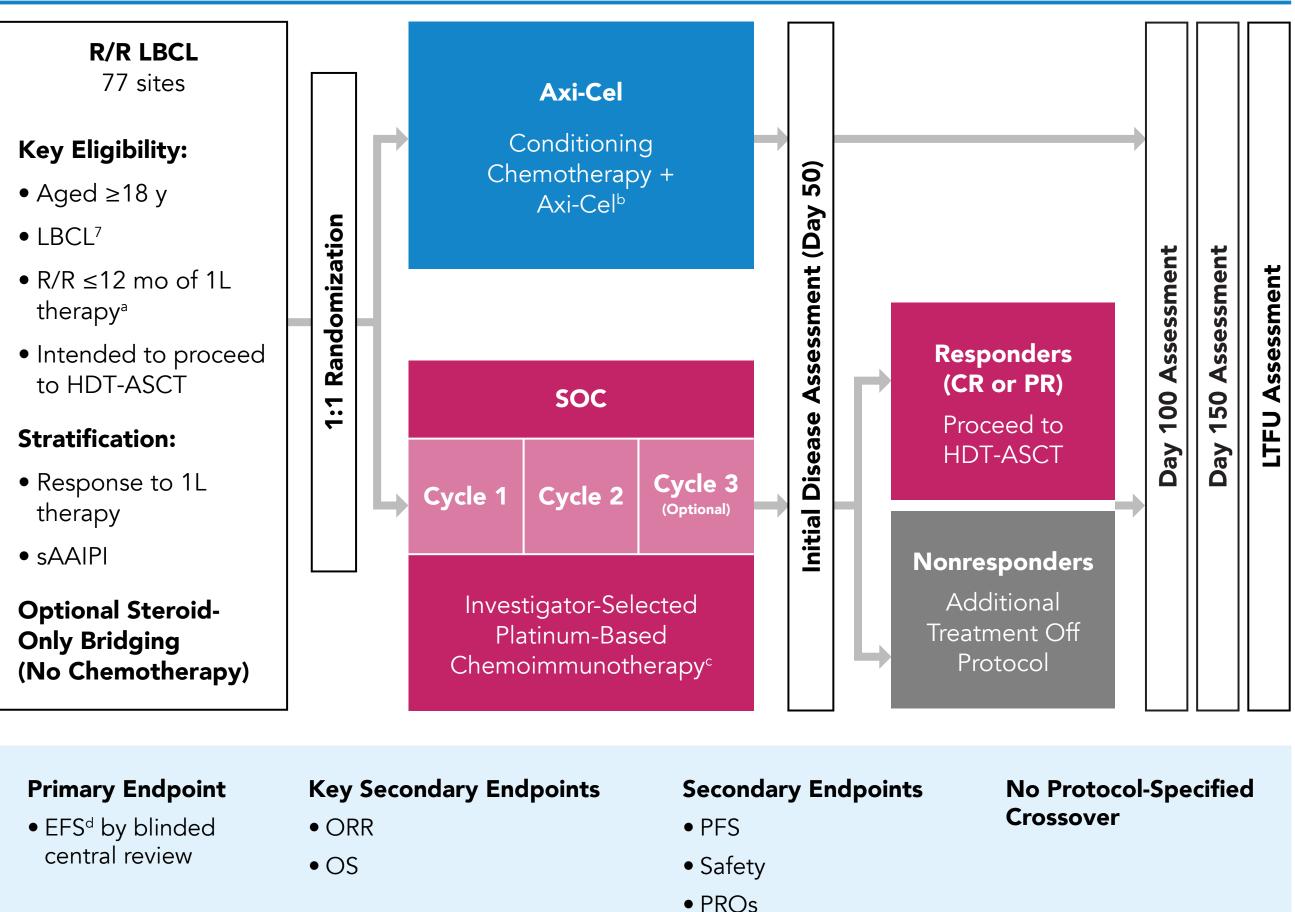
Poster 7548

Clinical and Patient-Reported Outcomes in a Phase 3, Randomized, Open-Label Study Evaluating Axicabtagene Ciloleucel Versus Standard-of-Care Therapy in Elderly Patients With Relapsed/Refractory Large B-cell Lymphoma (ZUMA-7)

Gerald Wulf, MD, PhD¹⁶; Linqiu Du, MS¹⁷; Julia T. Snider, PhD¹⁷; Christina To, MD¹⁷; and Olalekan O. Oluwole, MBBS, MPH¹⁸

 The University of Texas MD Anderson Cancer Center, Tampa, FL, USA; ⁵ Division of Hematology, Department of Medicine, St Louis, MO, USA; ⁵ Division of Hematology, Department of Medicine, St Louis, MO, USA; ⁵ Division of Hematology, Department of Medicine, St Louis, MO, USA; ⁴ Washington University of Nedical Center, Tampa, FL, USA; ⁴ Washington University of Texas MD Anderson Cancer Center, Tampa, FL, USA; ⁴ Washington University of Medicine, St Louis, MO, USA; ⁵ Division of Hematology, Department of Medicine, St Louis, MO, USA; ⁴ Washington University of Texas MD Anderson Cancer Center, Tampa, FL, USA; ⁴ Washington University of Medical Center, Tampa, FL, USA; ⁴ Washington University of Texas MD Anderson, TA, USA; ⁴ Washington University of Texas MD, USA; ⁴ Washington University, Halifax, Nova Scotia, Canada; ⁶ Un ¹⁶University Medicine Göttingen, Göttingen, Germany; ¹⁷Kite, a Gilead Company, Santa Monica, CA, USA; and ¹⁸Vanderbilt University Cancer Center, Nashville, TN, USA

BACKGROUND


- Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor T-cell therapy approved for the treatment of adult patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) after ≥2 lines of systemic therapy and most recently, in the United States, for R/R LBCL within 12 months of first-line chemoimmunotherapy¹
- The median age at LBCL diagnosis is 66 years, and age can be a determining factor in the decision to use curative therapy^{2,3}
- Older patients with R/R LBCL are at risk of inferior outcomes, increased toxicity, and inability to tolerate second-line standard-of-care (SOC) treatment³
- In addition, second-line SOC is often associated with poor health-related quality of life (QoL)^{4,5}
- ZUMA-7 (NCT03391466) is the first randomized, global, multicenter Phase 3 study of axi-cel versus SOC as second-line treatment in patients with R/R LBCL
- In ZUMA-7, axi-cel significantly improved event-free survival (EFS) compared with second-line SOC (hazard ratio [HR], 0.398, P<.0001; median 8.3 versus 2 months, respectively; 24-month EFS rate: 41% versus 16%, respectively; 24.9-month median follow-up)⁶

OBJECTIVE

• To present the safety, efficacy, and patient-reported outcome (PRO) results in a preplanned subgroup analysis of ZUMA-7 patients aged \geq 65 years

METHODS

Figure 1. ZUMA-7 Study Schema and Endpoints

^a Refractory disease was defined as no CR to 1L therapy; relapsed disease was defined as CR followed by biopsy-proven disease relapse \leq 12 months from completion of 1L therapy. ^b Axi-cel patients underwent leukapheresis followed by conditioning chemotherapy with cyclophosphamide (500 mg/m²/day) and fludarabine (30 mg/m²/day) 5, 4, and 3 days before receiving a single axi-cel infusion (target intravenous dose, 2×10⁶ CAR T cells/kg). ^c Protocol-defined SOC regimens included R-GDP, R-DHAP, R-ICE, or R-ESHAP. ^d EFS was defined as time from randomization to the earliest date of disease progression per Lugano Classification,⁸ commencement of new lymphoma therapy, or death from any cause. 1L, first-line; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; EFS, event-free survival; HDT-ASCT, high-dose chemoimmunotherapy and autologous stem cell transplantation; LBCL, large B-cell lymphoma; LTFU, long-term follow-up; mo, month; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; PRO, patient-reported outcome; R-DHAP, rituximab, dexamethasone, cytarabine, and cisplatin; R-ESHAP, rituximab, etoposide, methylprednisolone, cytarabine, and cisplatin; R-GDP, rituximab, gemcitabine, cisplatin, and dexamethasone; R-ICE, rituximab, ifosfamide, carboplatin, and etoposide phosphate; R/R, relapsed/refractory; sAAIPI, second-line age-adjusted International Prognostic Index; SOC, standard of care; y, year.

- Disease assessments by positron emission tomography and computed tomography scan per Lugano Classification⁸ occurred at specified time points from randomization (**Figure 1**)
- Primary endpoint was EFS, defined as time from randomization to the earliest date of disease progression,
- commencement of new lymphoma therapy, or death from any cause
- Key secondary endpoints included objective response rate (ORR) and overall survival (OS)
- Secondary endpoints included progression-free survival (PFS), safety, and PROs
- Statistical analysis of the preplanned subgroup was similar to the primary efficacy analysis
- Multivariate analyses were conducted to examine efficacy in treatment with axi-cel compared with SOC after adjusting for multiple covariates (treatment, gender, disease type, molecular subgroup, lactate dehydrogenase, tumor burden, and age)
- All reported *P* values are descriptive

RESULTS

Figure 2. Disposition of Patients Aged ≥65 Years in ZUMA-7

Axi-Cel Arm N=51 **Underwent Leukapheresi** n=51 **Received Lymphodepleting**

Chemotherapy n=49

n=49

96% received axi-cel

Axi-cel, axicabtagene ciloleucel; HDT-ASCT; high-dose chemoimmunotherapy and autologous stem cell transplantation; SOC, standard of care.

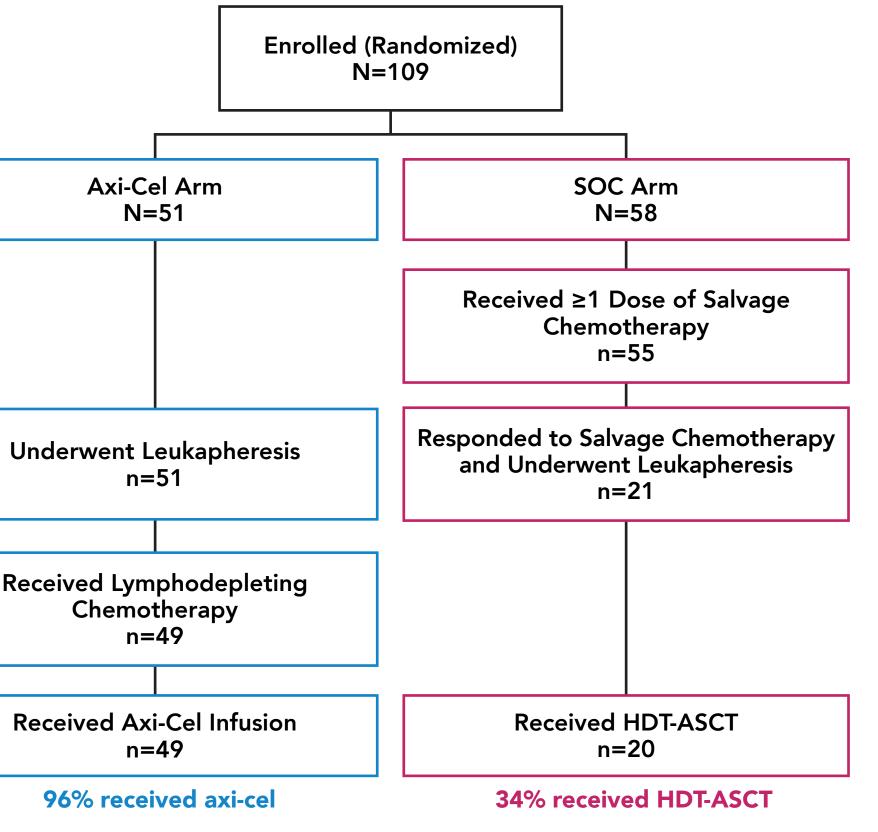
- SOC arms, respectively)

Table 1. Baseline Characteristics for Patients Aged ≥65 Years

Characteristic Median age (range),

Sex, male, n (%) Disease stage III-IV. sAAIPI of 2-3ª, n (%) Response to 1L thei Primary refractory Relapse ≤12 month Disease type per inv

DLBCL not specified


T-cell/histiocyte-rich

Large cell transform lymphoma

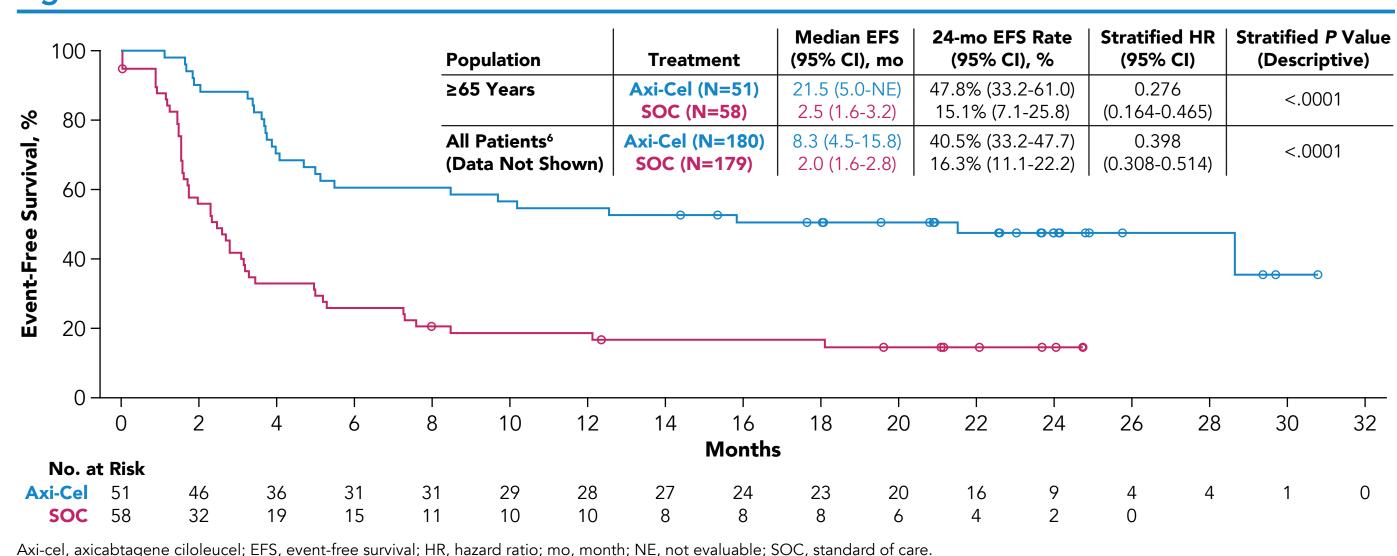
HGBL with/without and/or BCL6 rearrar

Elevated LDH level^b

^a As reported by investigator at the time of randomization via Interactive Voice/Web Response System. ^b LDH level greater than upper limit of normal per local laboratory reference range. 1L, first-line; axi-cel, axicabtagene ciloleucel; DLBCL, diffuse large B-cell lymphoma; HGBL, high grade B-cell lymphoma; LBCL, large B-cell lymphoma; LDH, lactate dehydrogenase; sAAIPI, second-line age-adjusted International Prognostic Index; SOC, standard of care.

• A total of 359 patients were enrolled in ZUMA-7 (N=180 and N=179 for axi-cel and

- The subgroup analysis of patients aged ≥ 65 years included 109 patients (N=51

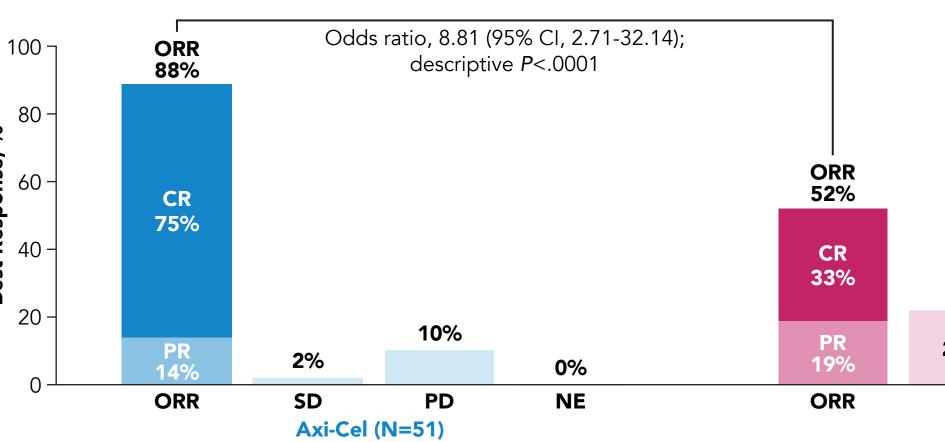

and N=58 for axi-cel and SOC arms, respectively; **Figure 2**) While 49/51 (96%) patients received axi-cel, only 20/58 (34%) received high-dose

chemoimmunotherapy and autologous stem cell transplantation (HDT-ASCT) • Axi-cel was successfully manufactured for all patients who underwent leukapheresis

	Axi-Cel N=51	SOC N=58	Overall N=109
, years	70 (65-80)	69 (65-81)	69 (65-81)
	28 (55)	39 (67)	67 (61)
n (%)	42 (82)	44 (76)	86 (79)
)	27 (53)	18 (31)	45 (41)
rapyª, n (%)			
	37 (73)	39 (67)	76 (70)
ns of 1L therapy	14 (27)	19 (33)	33 (30)
vestigator, n (%)			
ed	27 (53)	40 (69)	67 (61)
h LBCL	0 (0)	1 (2)	1 (1)
nation from follicular	7 (14)	9 (16)	16 (15)
: MYC and BCL2 Ingement	17 (33)	8 (14)	25 (23)
b	31 (61)	24 (41)	55 (50)

 Compared with SOC patients, more axi-cel patients had high-risk features at baseline, including second-line age-adjusted International Prognostic Index 2-3 (53% vs 31%), elevated lactate dehydrogenase (61% vs 41%), and high-grade B-cell lymphoma (including double-/triple-hit lymphoma; 33% vs 14%; **Table 1**)

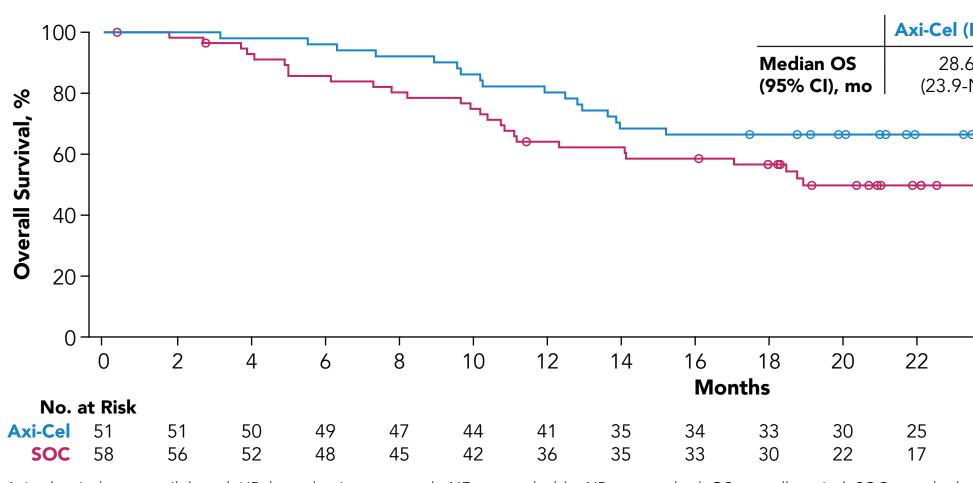
Figure 3. Primary Endpoint: Event-Free Survival Per Blinded Central Review in Patients Aged ≥65 Years



• The primary endpoint of EFS showed that treatment with axi-cel was superior to SOC (HR, 0.276; descriptive P<.0001; Figure 3) • With 24.3-months median follow-up, median EFS was longer with axi-cel versus SOC (21.5 months [95% CI, 5.0-not evaluable]

vs 2.5 months [95% CI, 1.6-3.2], respectively) in patients aged 65 years or older

• Kaplan-Meier estimates of the 24-month EFS rates were higher for axi-cel than for SOC (47.8% vs 15.1%, respectively) • Multivariate analyses showed similar EFS results when adjusting for differences in baseline characteristics (HR, 0.23; descriptive *P*<.0001)


Figure 4. Objective Response Rate in Patients Aged ≥65 Years

^a NE: In the SOC arm, there was 1 patient with undefined disease and 4 who did not have response assessments done. Axi-cel, axicabtagene ciloleucel; CR, complete response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease; SOC, standard of care.

• ORR was higher with axi-cel versus SOC (descriptive P<.0001), and complete response (CR) rate of the axi-cel arm was over double that of the SOC arm (75% vs 33%, respectively; **Figure 4**)

Figure 5. Overall Survival in Patients Aged ≥65 Years, Evaluated as an Interim Analysis

Axi-cel, axicabtagene ciloleucel; HR, hazard ratio; mo, month; NE, not evaluable; NR, not reached; OS, overall survival; SOC, standard of

• 57% of SOC patients received subsequent cellular immunotherapy (off protocol) • OS, evaluated as a preplanned interim analysis, was prolonged in the axi-cel compared with the SOC arm (HR, 0.517; 95% CI, 0.277-0.964; descriptive *P*=.0175; **Figure 5**)

• The Kaplan-Meier estimate of OS at 2 years was 64% in the axi-cel arm and 51% in the SOC arm

• Preplanned sensitivity analysis suggested an OS benefit in favor of axi-cel with the Rank Preserving Structural Failure Time model⁹ (HR, 0.364; 95% CI, 0.183-0.723)

• Median PFS was 21.5 months (95% CI, 5.1-NE) for the axi-cel arm and 5.0 months (95% CI, 2.8-7.3) for the SOC arm (HR, 0.384; 95% CI, 0.214-0.691; descriptive *P*<.001)

All Patients ⁶ (Data Not Shown)	ORR, %	CR, %
Axi-Cel (N=180) SOC (N=179)	83% 50%	65% 32%

22% 17% **9**% SOC (N=58)

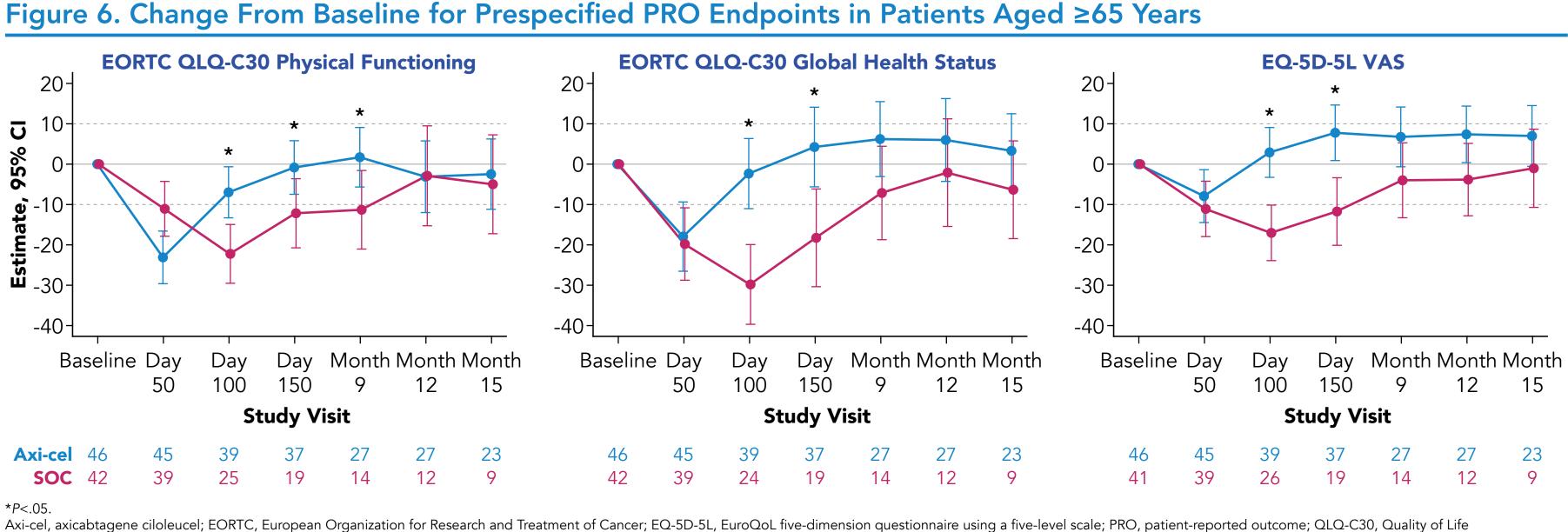

(N=51)	SOC (N=58)	Stratifi	ed HR (9	95% CI)
.6 P-NE)		IR 3-NE)	(0.	0.517 277-0.96	4)
[∞] ₋₀₀₀	[⊷] ∟∞				
		- [∍€)
24	26	28	30	32	34
Ζ4	20	20	30	32	34
22 14	17 7	11 1	5 0	3	0
of care.					

Table 2. Safety Overview in Patients Aged ≥65 Years

	Axi-Cel n=49		SOC n=55	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Any AE, n (%) ^{a,b}	49 (100)	46 (94)	55 (100)	45 (82)
Pyrexia	47 (96)	4 (8)	14 (25)	0 (0)
Neutropenia ^c	39 (80)	39 (80)	24 (44)	24 (44)
Nausea	23 (47)	1 (2)	37 (67)	3 (5)
Any serious AE, n (%) ^d	29 (59)	25 (51)	26 (47)	23 (42)
CRS, n (%) ^{e,f}	48 (98)	4 (8)	-	-
CRS management, ^g n (%)				
Tocilizumab	33 (67)		-	
Corticosteroids	14 (29)		-	
Vasopressors	3 (6)		-	
Median time to onset, days	3		-	
Median duration of events, days	8		-	
Neurologic event, n (%) ^{h,i}	32 (65)	13 (27)	14 (25)	1 (2)
Management with corticosteroids, ⁹ n (%)	22 (45)		0 (0)	
Median time to onset, days	7		26	
Median duration of events, days	9		39	
Reason for deaths, n (%)				
Progressive disease	19 (39)		20 (36)	
Grade 5 AEs during protocol-specified reporting period	1 (2) ^j		1 (2) ^k	
Definitive therapy-related mortality	0 (0)		1 (2) ^k	
Other	1 (2)		5 (9)	

COVID-19 (n=2), cardiopulmonary arrest (n=1), urosepsis (n=1), and sepsis (n=1) in the SOC arm AE, adverse event; axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; SOC, standard of care.

- Grade \geq 3 adverse events (AEs) occurred in 46/49 (94%) axi-cel patients and 45/55 (82%) SOC patients (**Table 2**)
- Grade 5 treatment-related AEs occurred in 0 and 1 (cardiac arrest) patient in the axi-cel and SOC arms, respectively • There were slightly higher rates of cytokine release syndrome (CRS) and neurologic events, including Grade >3, in patients aged >65 years compared with the
- overall ZUMA-7 population⁶ - CRS occurred in 98% and 8% for any grade and Grade ≥3, respectively, in patients ≥65 years of age compared with 92% and 6% in the overall ZUMA-7 populatic
- In the axi-cel arm, neurologic events occurred in 65% and 27% for any grade and Grade ≥3, respectively, in patients ≥65 years of age compared with 60% and 21% in the overall ZUMA-7 population

Questionnaire-Core 30; SOC, standard of care; VAS, visual analogue scale.

- In the QoL analysis set comprising 46 axi-cel and 42 SOC patients, there was a clinically meaningful difference in mean change of scores from baseline at Day 100 in favor of axi-cel for European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire-Core 30 (QLQ-C30) Global Health (P<.0001) Physical Functioning (P=.0019), and EuroQoL five-dimension questionnaire using a five-level scale (EQ-5D-5L) visual analogue scale (P<.0001; Figure 6) For all 3 domains, scores favored (P<.05) axi-cel over SOC at Day 150
- The mean estimated scores numerically returned to or exceeded baseline scores earlier in the axi-cel arm (by Day 150) but never equaled or exceeded baseline scores by Month 15 in the SOC arm
- Additional PRO domains with mean change of scores from baseline to Day 100 in favor of axi-cel were EORTC QLQ-C30 Role Functioning, EORTC QLQ-C30 Emotional Functioning, EORTC QLQ-C30 Social Functioning, EORTC QLQ-C30 Fatigue, EORTC QLQ-C30 Dyspnea, EORTC QLQ-C30 Appetite Loss, EORTC QLQ-C30 Diarrhea, and EQ-5D-5L Index

Grade ≥3 neurologic events occurred in 23 (19%) axi-cel patients and 0 (0%) SOC patients. ¹ Due to COVID-19. ^k Due to cardiac arrest. ¹ Other reasons for death included natural progression from prior subdural hematoma (n=1) in the axi-cel arm and

CONCLUSIONS

- Axi-cel demonstrated superiority over second-line SOC (HDT-ASCT) in patients \geq 65 years, despite the greater frequency of high-risk features in the axi-cel arm, with
- >8-fold greater median EFS (21.5 months vs 2.5 months, respectively; descriptive P<.0001)
- >3-fold greater estimated 24-month EFS rate
- Over double the CR rate
- Almost triple the proportion of patients receiving definitive therapy
- Axi-cel had a manageable safety profile that was consistent with previous studies and real-world data in patients of all ages^{12,13}
- Compared with SOC, axi-cel also showed meaningful improvement in QoL, measured by multiple validated PRO instruments, with suggested faster recovery to pretreatment QoL
- These data demonstrate that older patients, who are frequently considered transplant-ineligible based on age, can safely receive second-line curative intent therapy
- The superior clinical outcomes and patient experience with axi-cel over SOC should help inform treatment choices in second-line R/R LBCL for patients 65 years of age or older

REFERENCES

- 1. YESCARTA[®] (axicabtagene ciloleucel) [Prescribing information]. Kite Pharma, Inc; 2022.
- . National *Cancer* Institute. Accessed May 12, 2022.
- https://seer.cancer.gov/statfacts/html/dlbcl.html. 3. Di M, et al. Oncologist. 2021;26:120-132.
- 4. Oerlemans S, et al. Ann Hematol. 2014;93:1705-1715.
- 5. Hafez R, et al. Alexandria J Med. 2018;679-683.
- 6. Locke FL, et al. N Engl J Med. 2022;386:640-654
- 7. Swerdlow SH, et al. *Blood*. 2016;127:2375-2390.

ACKNOWLEDGMENTS

• The patients, families, friends, and caregivers

Science; honoraria from Kite; and research funding from Kite.

- The entire ZUMA-7 study team of investigators, coordinators, and health care staff at each study site
- Medical writing support was provided by Jennifer Yang, PhD, of Nexus Global Group Science LLC, funded by Kite
- All employees of Kite involved over the course of the study for their contributions • These data were in part previously presented at the 2022 European CAR T-Cell Meeting¹⁴

DISCLOSURES

JRW: consultancy or advisory role for Kite, Novartis, Bristol Myers Squibb, Genentech, AstraZeneca, Janssen, Merck, ADC Therapeutics, AbbVie, Genmab, Umoja, and Iksuda; and research funding from Kite, Novartis, Bristol Myers Squibb, Genentech, MorphoSys, AstraZeneca, and ADC Therapeutics. **FLL:** consulting or advisory role with EcoR1, Emerging Therapy Solutions, Gerson Lehrman Group, Allogene, Amgen, bluebird bio, Bristol Myers Squibb/Celgene, Calibr, Iovance, Kite, Janssen, Legend Biotech, Novartis, Umoja, Cowen, Cellular Biomedicine Group, GammaDelta Therapeutics, and Wugen; research funding from Kite, Allogene, and Novartis; and patents, royalties, other intellectual property from several patents held by the institution in my name (unlicensed) in the field of cellular immunotherapy. **MD:** honoraria from Roche, Gilead, MSD, and Novartis; consultancy or advisory role for Roche, Gilead, MSD, and Novartis; speakers' bureau participation for Roche, Gilead, MSD, and Novartis; and research funding from Novartis and Roche. AG: consultancy or advisory role for Kite, Amgen, Atara, Wugen, and Celgene; research funding from Kite, and Amgen; and honoraria from Kite. **ME:** honoraria from Kite, Bristol Myers Squibb, Novartis, Pfizer, and Janssen; and consulting or advisory role with Kite, Bristol Myers Squibb, Novartis, Pfizer, Janssen. **TvM:** honoraria from Kite; and consultancy or advisory role for Janssen. **DBM:** consultancy or advisory role for Kite, Novartis, Juno-Celgene-Bristol Myers Squibb, Allogene, Precision BioSciences, Adicet, Pharmacyclics, Janssen, Takeda, Adaptive Biotechnologies, and Miltenyi Biotec; research funding from Kite, Novartis, Juno-Celgene-Bristol Myers Squibb, Allogene, Precision BioSciences, Adicet, and Adaptive Biotechnologies; and patents, royalties, or other intellectual property from Pharmacyclics. **MU:** advisory board: Gilead and Stemline. **MAP:** employment with Memorial Sloan Kettering Cancer Center; honoraria from AbbVie, Astellas, Bellicum, Celgene, Bristol Myers Squibb, Incyte, Karyopharm, Kite, Miltenyi Biotec, MorphoSys, Nektar Therapeutics, Novartis, Takeda, VectivBio AG, and Vor Biopharma; consultancy or advisory role for Merck, Omeros, and Orca Bio; research funding from Incyte, Kite, and Miltenyi Biotec; and other relationships with DSMB, Cidara Therapeutics, Medigene, Sellas Life Sciences, and Servier. **UF:** honoraria from Kite; consulting or advisory role with MorphoSys. LW: consultancy or advisory role for Novartis, MSD, Bristol Myers Squibb, AstraZeneca, and Roche; research funding from Roche; and expert testimony from AstraZeneca and Novartis. **LL:** consultancy and travel support with AbbVie, AstraZeneca, Merck, TG Therapeutics, Janssen, Epizyme, Kite, Celgene, Pharmacyclics, Bristol Myers Squibb, ADC Therapeutics, BeiGene, and Seattle Genetics; speakers' bureau participation and travel support for Kite, BeiGene, Pharmacyclics, Janssen, AstraZeneca, Seattle Genetics, TG Therapeutics, Epizyme, Karyopharm, Celgene, and Bristol Myers Squibb; Participation on a Data Safety Advisory Board with TG therapeutics, AbbVie, Pharmacyclics, Janssen, AstraZeneca, Seattle Genetics, and ADC Therapeutics. MJK: honoraria from Kite, Novartis, Miltenyi Biotec, Roche, and Bristol Myers Squibb/Celgene; consultancy or advisory role for Kite, Roche, Bristol Myers Squibb/Celgene, Novartis, and Miltenyi Biotec; research funding from Kite, Roche, Takeda, and Celgene; and travel support from Kite, Roche, Novartis, and Miltenyi Biotec. CAJ: honoraria from Kite, Celgene, Novartis, bluebird bio, Epizyme, Humanigen, Pfizer, Precision BioSciences, Nkarta, Lonza, and AbbVie; consultancy or advisory role for Kite, Celgene, Novartis, Pfizer, Humanigen, Precision BioSciences, Nkarta, bluebird bio, Lonza, Pfizer, Ispen, and AbbVie; speakers' bureau participation for Axis and Clinical Care Options; research funding from Pfizer; and travel support from Kite, Celgene, Novartis, Precision BioSciences, Lonza, Pfizer, and Humanigen. JMP: consultancy or advisory role for Kite, AstraZeneca, MorphoSys/Incyte, Epizyme, and Actinium. GW: honoraria from Gilead, Novartis, Clinigen; consulting or advisory role for Novartis; speakers' bureau for Amgen. LD: employment with Kite; consulting or advisory role with Agios Pharmaceuticals. **JTS:** employment with Kite; and stock or other ownership in Gilead. **CT:** employment with Kite; stock or other ownership in Gilead Sciences. **OOO:** consultancy or advisory role for Kite, Janssen, Pfizer, Novartis, and Curio

- 8. Cheson BD, et al. J Clin Oncol. 2014:32:3059-3068.
- 9. Robins JM and Tsiatis AA. Commun Stat Theory Methods. 1991;2609-2631.
- 10. Lee DW, et al. Blood. 2014;124:188-195. 11. Topp MS, et al. Lancet Oncol. 2015;16:57-66. 12. Neelapu SS, et al. N Engl J Med
- 2017;377:2531-2544. 13. Locke FL, et al. Lancet Oncol. 2019;20:31-42.
- 14. van Meerten T, et al. EU CAR T 2022. Abstract 54.