
BACKGROUND
•	 Axicabtagene ciloleucel (axi‑cel) is an autologous anti‑CD19 chimeric antigen receptor (CAR) T‑cell therapy 

approved for the treatment of adult patients with relapsed/refractory (R/R) large B‑cell lymphoma (LBCL) 
after ≥2 lines of systemic therapy and most recently, in the United States, for R/R LBCL after first‑line 
chemoimmunotherapy1

•	 In the Phase 3 randomized ZUMA‑7 (NCT03391466) in second‑line (2L) R/R LBCL2:
	– Axi‑cel showed superiority to standard of care (SOC; salvage chemotherapy and high‑dose chemotherapy 
with autologous stem cell transplantation [HDT‑ASCT]) in event‑free survival (EFS; hazard ratio, 0.398, 
P<.0001; median 8.3 vs 2 months, respectively; 24‑month EFS rate: 41% vs 16%, respectively; 24.9‑month 
median follow‑up)

	– Axi‑cel had a manageable safety profile that was consistent with that observed in the ZUMA‑1 study of 
axi‑cel in patients with refractory LBCL3,4

•	 In ZUMA‑1, the strongest correlate of durable response was peak CAR T‑cell levels normalized to 
pretreatment tumor burden5

OBJECTIVE
•	 To report results of exploratory analyses of tumor characteristics, including pretreatment tumor burden, tissue 

hypoxia‑related lactate dehydrogenase (LDH) level, tumor gene expression signatures, and CD19 expression 
in ZUMA‑7

METHODS
Figure 1. ZUMA‑7 Study Schema and Endpoints
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a Refractory disease was defined as no CR to 1L therapy; relapsed disease was defined as CR followed by biopsy‑proven disease relapse ≤12 months from completion 
of 1L therapy. b Axi‑cel patients underwent leukapheresis followed by conditioning chemotherapy with cyclophosphamide (500 mg‌/‌m2‌ /‌day) and fludarabine 
(30 mg‌/‌m2‌ /‌day) 5, 4, and 3 days before receiving a single axi‑cel infusion (target intravenous dose, 2×106 CAR T cells/kg). c Protocol‑defined SOC regimens 
included R‑GDP, R‑DHAP, R‑ICE, or R‑ESHAP. d EFS was defined as time from randomization to the earliest date of disease progression per Lugano Classification,7 
commencement of new lymphoma therapy, or death from any cause.
1L, first‑line; axi‑cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; EFS, event‑free survival; HDT‑ASCT, high‑dose 
chemoimmunotherapy and autologous stem cell transplantation; LBCL, large B‑cell lymphoma; LTFU, long‑term follow‑up; mo, month; ORR, objective response rate; 
OS, overall survival; PFS, progression‑free survival; PR, partial response; PRO, patient‑reported outcome; R‑DHAP, rituximab, dexamethasone, cytarabine, and 
cisplatin; R‑ESHAP, rituximab, etoposide, methylprednisolone, cytarabine, and cisplatin; R‑GDP, rituximab, gemcitabine, cisplatin, and dexamethasone; 
R‑ICE, rituximab, ifosfamide, carboplatin, and etoposide phosphate; R/R, relapsed/refractory; sAAIPI, second‑line age‑adjusted International Prognostic Index; 
SOC, standard of care; y, year.

•	 Tumor burden was calculated as the sum of product diameters (SPD) of ≤6 reference lesions5

•	 Serum LDH was assessed per local laboratory

•	 Pretreatment tumor samples were assessed for gene expression by the NanoString IO 360™ panel and for 
prespecified immune contexture signatures related to T‑cell function and trafficking (Immunosign 15 [IS15] 
and 21 [IS21]8)

•	 ZUMA‑1 Cohorts 1 and 2 data were used for comparison to third‑line R/R LBCL

•	 CD19 protein expression was assessed by immunohistochemistry (H‑score)

•	 Associations between biomarkers and clinical outcomes were assessed using descriptive statistics (P<.05 was 
considered significant)

•	 EFS was defined as time from randomization to the earliest date of disease progression per Lugano 
Classification,7 commencement of new lymphoma therapy, or death from any cause

•	 Response definitions were defined according to response at time of data cutoff (primary analysis) and were 
as follows:

	– Ongoing responders: patients who achieved a complete or partial response and remained in response
	– Relapsed: patients who achieved a complete response (CR) or partial response and subsequently 
experienced disease progression

	– Nonresponders: patients who experienced stable or progressive disease as best response

Table 1. Baseline Tumor Characteristics

Characteristic

ZUMA‑7 ZUMA‑1a

Axi‑Cel
N=170

SOC
N=168

Overall
N=338

Cohorts 1+2
N=101

Elevated LDH level, n (%)b 92 (54) 90 (54) 182 (54) 62 (61)

LDH ≥2× ULN, n (%)b 43 (25) 36 (21) 79 (23) 45 (45)

Median tumor burdenc (Q1‑Q3), [range], mm2 2118 (981‑4368)
[181‑22,538]

2069 (926‑4881)
[252‑20,117]

2115 (942‑4755)
[181‑22,538]

3723 (2200‑7138)
[171‑23,297]

Median CD19 H‑score (range)d 140 (0‑300) 160 (0‑280) 150 (0‑300) 210 (0‑300)
a ZUMA‑1 baseline tumor characteristics are shown for reference purposes. b LDH level greater than ULN per local laboratory reference range. c As determined by the sum of product diameters of ≤6 reference lesions.5 
d CD19 staining was not required for participation in the trial. Testing was retrospectively conducted per central laboratory. Numbers of patients included in median CD19 H‑score were 170 in the axi‑cel arm, 168 in the SOC arm, 
and 338 overall.
Axi‑cel, axicabtagene ciloleucel; LDH, lactate dehydrogenase; Q, quartile; SOC, standard of care; ULN, upper limit of normal.

•	 Baseline tumor characteristics were generally balanced between axi‑cel and SOC patients (Table 1)

Figure 2. CAR T‑Cell Expansion Was Associated With Response, But Not Ongoing Response, in ZUMA‑7
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•	 CAR T‑cell expansion (peak) was significantly lower in patients who did not respond compared with patients in ongoing response or who relapsed 
(P<.05; Figure 2, left)

•	 There was no association between ongoing responses and CAR T‑cell peak (Figure 2, middle) or CAR T‑cell peak normalized to tumor burden 
(Figure 2, right)

•	 Additionally, peak CAR T‑cell expansion was comparable between patients with high and low CD19 H‑score (above vs below median CD19 H‑score, 
P=.6704; data not shown)

•	 Consistent results were observed in the subgroup of patients who were followed up for at least 1 year (data not shown)

•	 CAR T‑cell expansion (peak and area under the curve [AUC]) and tumor burden were lower in ZUMA‑7 compared with ZUMA‑1 (P<.05), whereas 
CAR T‑cell peak expansion normalized to SPD was comparable between ZUMA‑1 and ZUMA‑7 (P=.5579; data not shown)

	– Sampling bias may have partly contributed to the differences in correlative analysis with ZUMA‑1 Cohorts 1 and 2, as there were fewer collections on 
Day 14 for ZUMA‑7 compared with ZUMA‑1

Figure 3. Event‑Free Survival in Major Prognostic Subgroups in ZUMA‑7
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Axi-Cel, High SPD (n=77)
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SOC, Normal LDH (n=78)

High SPD (Axi-Cel vs SOC)
Low SPD (Axi-Cel vs SOC)
Axi-Cel SPD (High vs Low)
SOC SPD (High vs Low)

HR (95% CI)
0.289 (0.195-0.429)
0.486 (0.329-0.717)
0.915 (0.604-1.388)
1.507 (1.055-2.153)

P value
<.0001
.0003
.6778
.0240

Elevated LDH (Axi-Cel vs SOC)
Normal LDH (Axi-Cel vs SOC)
Axi-Cel LDH (Elevated vs Normal)
SOC LDH (Elevated vs Normal)

HR (95% CI)
0.324 (0.288-0.459)
0.496 (0.333-0.739)
1.108 (0.745-1.648)
1.556 (1.102-2.195)

P value
<.0001
.0006
.6132
.0119

Tumor Burdena LDH

a Tumor burden was defined as high (>median) or low (≤median) SPD.
Axi‑cel, axicabtagene ciloleucel; HR, hazard ratio; LDH, lactate dehydrogenase; SOC, standard of care; SPD, sum of product diameters.

•	 Axi‑cel EFS was superior to SOC arm regardless of tumor burden, LDH (Figure 3), or molecular subclass (germinal center B‑cell–like [GCB] vs 
non‑GCB–like; data not shown)

•	 Tumor burden and LDH strongly associated with each other (data not shown)

•	 Tumor burden and LDH negatively associated with EFS in SOC patients

•	 Consistent results were observed with a 3721 mm2 threshold of tumor burden for high versus low groups (median from ZUMA‑1 Cohorts 1 and 2) and 
with a 2× upper limit of normal LDH threshold (data not shown)

Figure 4. Immunosign 15 (IS15) and 21 (IS21) Indices Suggested a Favorable Immune Contexture in Earlier Lines of Therapy
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First‑line samples were obtained from ZUMA‑7 biopsies collected before first‑line therapy (archival); second‑line samples were obtained from ZUMA‑7 biopsies collected after first‑line therapy; third‑line samples were obtained from ZUMA‑1 biopsies 
collected after last line of therapy.
IS, Immunosign.

•	 IS15 and IS21 decreased through lines of therapy, possibly underlying a more favorable tumor microenvironment (TME) immune contexture in earlier lines (Figure 4)

•	 IS21 previously associated with CR rate and PFS following treatment with axi‑cel in third‑line of therapy9

Figure 5. Associations of B‑Cell Lineage Nanostring Signature With Improved EFS in ZUMA‑7
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Ongoing Response Versus Others (Relapse + No Response)
High B Cell (Axi-Cel vs SOC)
Low B Cell (Axi-Cel vs SOC)
Axi-Cel B Cell (High vs Low)
SOC B Cell (High vs Low)

HR (95% CI)
0.264 (0.168-0.415)
0.533 (0.358-0.794)
0.424 (0.269-0.670)
1.016 (0.687-1.502)

P value
<.0001
.0019
.0002
.9374

The fold change was calculated as Log2([group one]/[group two]). Statistical analysis were conducted using Kruskal–Wallis test (numerical vs categorical).
High B‑cell lineage refers to a Nanostring IO‑360 score >median score; low B‑cell lineage refers to a Nanostring IO‑360 score ≤median score.
APM, antigen presentation machinery; ARG1, arginase 1; axi‑cel, axicabtagene ciloleucel; EFS, event‑free survival; HR, hazard ratio; IFN, interferon; MAGEs, melanoma antigen genes; NK, natural killer; PD‑1, programmed cell death protein 1; 
PD‑L, programmed cell death ligand; SOC, standard of care; TIS, tumor inflammation signature; Treg, regulatory T cell.

•	 Axi‑cel patients with a stronger B‑cell lineage signature exhibited improved EFS (Figure 5)
	– B‑cell lineage signature refers to a predefined signature from Nanostring IO‑360, derived from a proprietary algorithm incorporating gene expression values of 
BLK, CD19, MS4A1, TNFRSF17, FCRL2, FAM30A, PNOC, SPIB, and TCL1A

Figure 6. Axi‑Cel Showed Improved EFS Versus SOC Regardless of CD19 Protein Expressiona
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a Results were consistent by mRNA expression.
Axi‑cel, axicabtagene ciloleucel; EFS, event‑free survival; HR, hazard ratio; mRNA, messenger ribonucleic acid; SOC, standard of care.

•	 Axi‑cel remained superior to SOC irrespective of high (>median) or low (≤median) CD19 expression protein/H‑score; Figure 6)

•	 Patients deemed CD19 negative by immunohistochemistry (H‑score <5) still presented substantial responses to axi‑cel with 85% objective response rate (ORR) 
versus 67% ORR in the SOC arm (data not shown)

Figure 7. Association Between Efficacy and CD19 Expression (H‑Score) in the Context of Immunosuppression in the 
ZUMA‑7 Axi‑Cel Arm
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Negative associations between CD19 H‑score and immune‑infiltrated TME in ZUMA‑7, including with a SII, which was generated through the calculation of root mean square of IO360 signatures: hypermutation, MMR loss, hypoxia, apoptosis, NOS2, 
MAGEs, mast cells, TGF‑beta, ARG1, endothelial cells, stroma, B7‑H3, myeloid inflammation. The fold change was calculated as Log([group one]/[group two]). Statistical analysis were conducted using Kruskal–Wallis test (numerical vs categorical). 
Only the predefined IO360 signatures and the immunosuppressive cluster are depicted.
ARG1, arginase 1; IFN, interferon; IS, Immunosign; MAGEs, melanoma antigen genes; MMR, mismatch repair; NK, natural killer; NOS, nitric oxide synthase; TH1, T helper type 1; TGF, transforming growth factor; SII, Stromal and Immunosuppressive 
Index; Treg, regulatory T cell; TME, tumor microenvironment.

•	 Lower CD19 protein expression (H‑score) overlapped with a more complex/immune‑infiltrated TME, possibly enriched with a number of immunosuppressive features, 
including regulatory T cells, markers of T‑cell exhaustions, ARG1, IDO1, B7‑H3, CTLA4, and macrophage and myeloid gene expression signatures (Figure 7)

	– This underscores that the reduced efficacy of axi‑cel in the CD19 H‑score low (≤median) subgroup might be dependent on low/suboptimal target expression 
and/or concurrent immunosuppressive environment

CONCLUSIONS
Figure 8. Key Prognostic Markers in 2L LBCL in ZUMA‑7
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a Tumor burden, LDH and GCB subgroup did not impact outcomes in the axi‑cel arm. b CD19 expression did not impact outcomes in the SOC arm.
Axi‑cel, axicabtagene ciloleucel; EFS, event‑free survival; GCB, germinal center B‑cell–like; LDH, lactate dehydrogenase; SOC, standard of care; SPD, sum of product diameters.

•	 In 2L LBCL, axi‑cel was superior to SOC across common prognostic subgroups, including higher tumor burden and LDH, and non‑GCB status (Figure 8)
	– High tumor burden, elevated LDH, and non‑GCB status were associated with poorer responses to SOC, but did not impact responses to axi‑cel in ZUMA‑7

•	 Markers of T‑cell function and trafficking (gene expression signatures, IS15 and IS21) might decrease through lines of therapy as disease progresses, 
supporting earlier axi‑cel intervention due to a more favorable immune contexture (higher T‑cell signature in TME in 2L compared with third‑line)

	– Responses to axi‑cel were substantial and superior to SOC for both high and low CD19 expression
	– Lower CD19 protein expression (H‑score) overlapped with a more complex/immune‑infiltrated TME, possibly enriched with a number of 
immunosuppressive features

•	 Axi‑cel showed improved EFS versus SOC irrespective of B‑cell lineage signature strength or level of CD19 protein or mRNA expression
•	 Axi‑cel intervention in 2L is supported by a favorable immune contexture and efficacy superior to SOC, including for patients with high tumor burden 

and elevated LDH

RESULTS
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