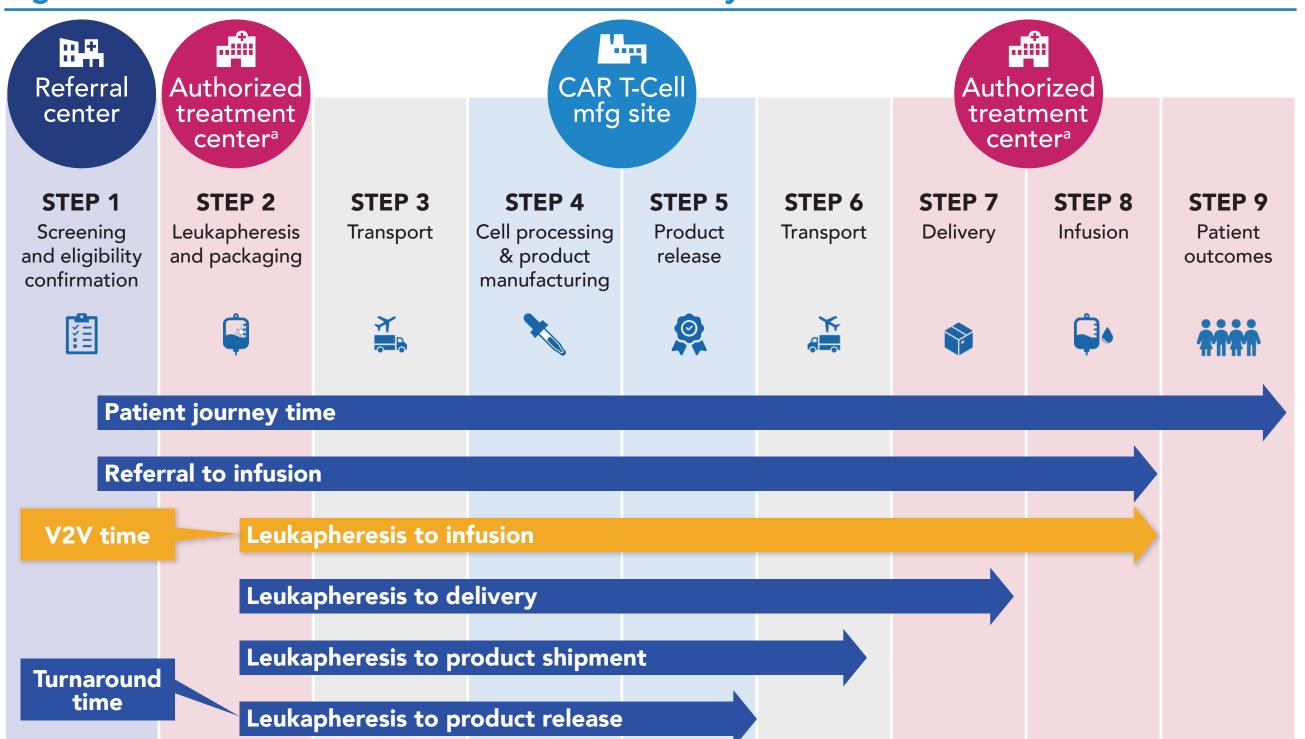
Real-world Impact of Time From Leukapheresis to Infusion (Vein-to-Vein Time) in Patients With Relapsed or Refractory Large B-cell Lymphoma Treated With Axicabtagene Ciloleucel


Frederick L. Locke, MD^{1*}; Zhen-Huan Hu, MPH^{2*}; Tanya Siddiqi, MD³; Caron A. Jacobson, MD, PhD⁶; Yi Lin, MD, PhD⁷; Matthew A. Lunning, DO⁸; Brian T. Hill, MD, PhD⁹; Armin Ghobadi, MD¹⁰; Harry Miao, MD, PhD²; Shilpa Shahani, MD²; Clare Spooner, MBBS, BSc²; Christine Fu, PhD²; Anik R. Patel, PhD²; Hairong Xu, MD, PhD²; Marcelo Pasquini, MD, MS¹¹

¹Moffitt Cancer Center, Tampa, FL, USA; ²Kite, a Gilead Company, Santa Monica, CA, USA; ³City of Texas MD Anderson Cancer Center, Houston, TX, USA; ³City of Hope National Medical Center, CA, USA; ³City of Texas MD Anderson Cancer Center, MN, USA; ⁴Cana-Farber Cancer Center, Houston, TX, USA; ⁴Cana-Farber C ⁸University of Nebraska, Omaha, NE, USA; ⁹Cleveland Clinic Foundation, Cleveland, OH, USA; ¹⁰Washington University School of Medicine, St. Louis, MO, USA; and ¹¹CIBMTR, Milwaukee, WI, USA *Equal contributors.

BACKGROUND

- Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved in the United States, as well as in multiple other countries worldwide, for the treatment of adults with relapsed or refractory (R/R) large B-cell lymphoma (LBCL) after ≥2 lines of systemic therapy and, recently in the United States and the European Union, for patients refractory to or who relapse within 12 months of first-line chemoimmunotherapy^{1,2}
- Clinical trials of axi-cel have demonstrated favorable efficacy compared with standard of care for the treatment of R/R LBCL^{3,4}
- Compared with other CAR T-cell products, axi-cel has a shorter median wait time from leukapheresis to infusion, referred to as vein-to-vein time (**Figure 1**)
- Real-world data of axi-cel and tisagenleceucel showed a median vein-to-vein time of 28 days for axi-cel versus 45 days for tisagenlecleucel,⁵ while lisocabtagene maraleucel, in clinical trials, showed a median vein-to-vein time of 36-37 days⁶⁻⁸
- A study based on the JULIET trial suggested that reduced CAR T-cell treatment wait time is associated with increased efficacy⁹

Figure 1. Overview of CAR T-Cell Patient Journey

^a Authorized Treatment Centers are also referred to as Qualified Treatment Centers. CAR, chimeric antigen receptor; mfg, manufracturing; V2V, vein-to-vein.

OBJECTIVE

Referral time

• To evaluate the impact of vein-to-vein time on real-world outcomes of axi-cel in R/R LBCL

METHODS

• In this analysis, vein-to-vein time refers to the time from leukapheresis to infusion for all patients in the study

Manufacturing

Figure 2. Study Design

Data Source

• Retrospective observational data of patients receiving commercial axi-cel in the US after ≥ 2 lines of therapy identified between October 2017 and August 2020 using the CIBMTR registry

Endpoints of Interest

- Effectiveness: ORR, CR, DOR,^a PFS, and OS
- Safety: CRS, ICANS, prolonged neutropenia, and prolonged thrombocytopenia^b

Statistical Analysis

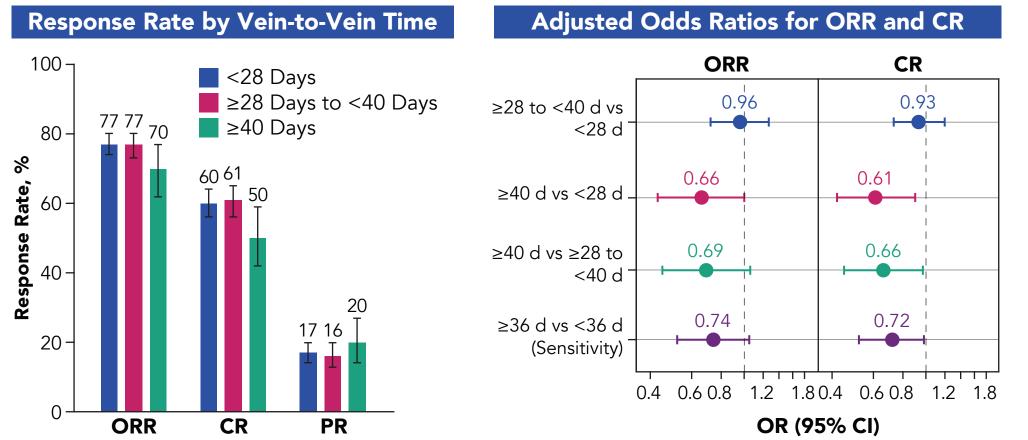
• Multivariable logistic and Cox regressions adjusted by key prognostic factors such as age, comorbidities, ECOG performance status, disease characteristics at diagnosis, and bridging therapy

Among patients who achieved initial CR/PR. ^b Among patients who were alive at Day 30. CIBMTR, Center for International Blood and Marrow Transplant Research; CR, complete response; CRS, cytokine release syndrome; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; ICANS, immune effector cell-associated neurotoxicity syndrome; ORR, objective response rate; OS, overall survival; PFS, progression-free survival;; US, United States.

Survival time

RESULTS

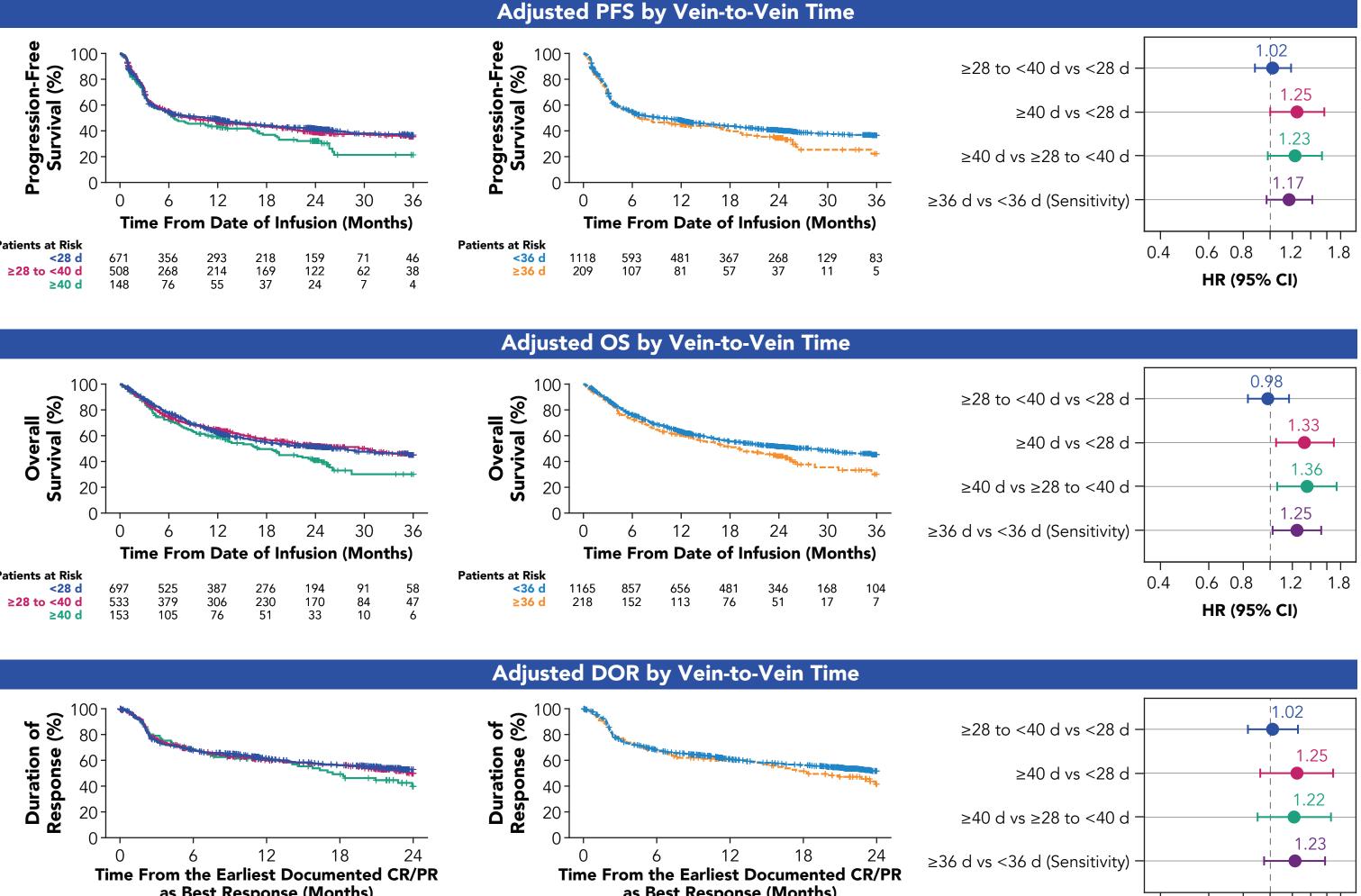
- Of 1497 patients with R/R LBCL treated with commercial axi-cel at 79 authorized treatment centers between October 2017 and August 2020, 1383 patients were included in the analysis (data cutoff date, May 4, 2022)
- 114 patients were excluded from the analysis based on the following criteria: prior non-transplant cellular therapy (n=30), primary central nervous system lymphoma or other B-cell lymphoma (n=23), missing data on comorbidity (n=43), unknown or outlying date of leukapheresis (≤2 days before lymphodepleting chemotherapy or ≥144 days before infusion; n=13), and no follow-up (n=5)
- Overall, median vein-to-vein time for axi-cel was 27 days in this analysis (interquartile range, 26-32 days)


Table 1. Baseline Characteristics by Vein-to-Vein Time

	Vein-to-Vein Time		
	<28 Days n=697	≥28 to <40 Days n=533	≥40 Days n=153
Age ≥65 years at infusion, n (%)	239 (34)	217 (41)	65 (42)
Male sex, n (%)	455 (65)	348 (65)	91 (59)
Black or African American, n (%)	28 (4)	34 (6)	9 (6)
Hispanic or Latino, n (%)	76 (11)	56 (11)	18 (12)
High grade B-cell lymphoma, n (%)	115 (16)	96 (18)	20 (13)
Double/triple hit, n (%)ª	106 (26)	87 (29)	18 (20)
ECOG PS \geq 2 at infusion, n (%)	35 (5)	20 (4)	9 (6)
Chemoresistant prior to infusion, n (%)	469 (67)	355 (67)	101 (66)
No. of prior lines ≥3, n (%) ^{a,b}	485 (71)	361 (70)	118 (82)
Use of bridging therapy, n (%) ^a	132 (20)	109 (22)	65 (46)
Any comorbidities, n (%) ^c	479 (69)	382 (72)	125 (82)
Year of infusion: ≤2018, n (%)	210 (30)	155 (29)	30 (20)
Year of infusion: 2019, n (%)	324 (46)	252 (47)	69 (45)
Year of infusion: 2020, n (%)	163 (23)	126 (24)	54 (35)

^a Percentages were based on non-missing cases. ^b Not including prior transplant. ^c Defined based on the hematopoietic cell transplant-specific comorbidity index¹¹ ECOG PS, Eastern Cooperative Oncology Group performance status.

- Vein-to-vein times were consistent regardless of sex, race/ethnicity, disease histology, ECOG PS at infusion, or chemosensitivity (**Table 1**)
- Patients with shorter vein-to-vein times appeared to be younger and less likely to have comorbidities
- Patients with vein-to-vein time \geq 40 days were more heavily pretreated and more likely to receive bridging therapy


Figure 3. Axi-Cel Response Rate and Adjusted Odds Ratios of ORR and CR by Vein-to-Vein Time

Covariates for step-wise selection and multivariable adjustment: age, sex, race, ethnicity, ECOG performance status prior to infusion, comorbidities (pulmonary, cardiac/cerebrovascular/heart valve disease, hepatic, and renal), histologic transformation, disease characteristics at initial diagnosis (double/triple hit, disease stage, elevated LDH and >1 extranodal involvements), chemosensitivity prior to infusion, number of prior lines of therapy, prior HCT, year of infusion, time from initial diagnosis to infusion, and use of bridging therapy. Axi-cel, axicabtagene ciloleucel; CR, complete response; d, day; ECOG, Eastern Cooperative Oncology Group; HCT, hematopoietic cell transplantation; LDH, lactate dehydrogenase; OR, odds ratio; ORR, objective response rate; PR, partial response.

- With a median follow-up of 24.2 months, complete response (CR) rates were 60%, 61%, and 50% (objective response rate 77%, 77%, and 70%) for patients with vein-to-vein time <28 days, \geq 28 to <40 days, and \geq 40 days, respectively (**Figure 3**)
- After other key prognostic factors were adjusted, patients with vein-to-vein time \geq 40 days had a significantly lower CR rate compared with patients with shorter vein-to-vein time
- ≥40 days versus <28 days: OR, 0.61 (95% CI, 0.42-0.90)
- − ≥40 days versus ≥28 to <40 days: OR, 0.66 (95% CI, 0.45-0.97)

Patients at Risk

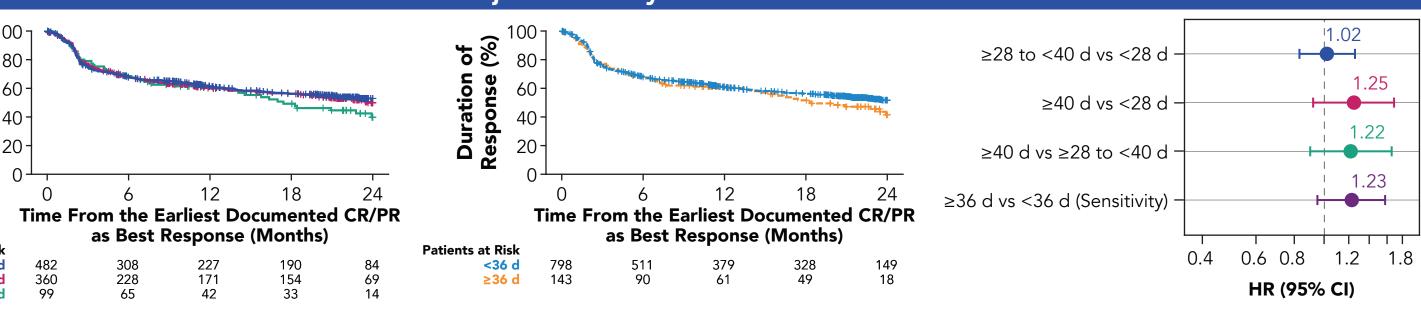

Patients at Ris ≥28 to <40 d

Figure 5. Axi-Cel Safety Outcomes by Vein-to-Vein Time

Incidence of		100
	t , %	80
	Event,	60
	erse	40
	Adve	20
		0

^a Evaluated at Day 30. Axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome.

Figure 4. Axi-Cel Adjusted PFS, OS, and DOR by Vein-to-Vein Time^{11,12}

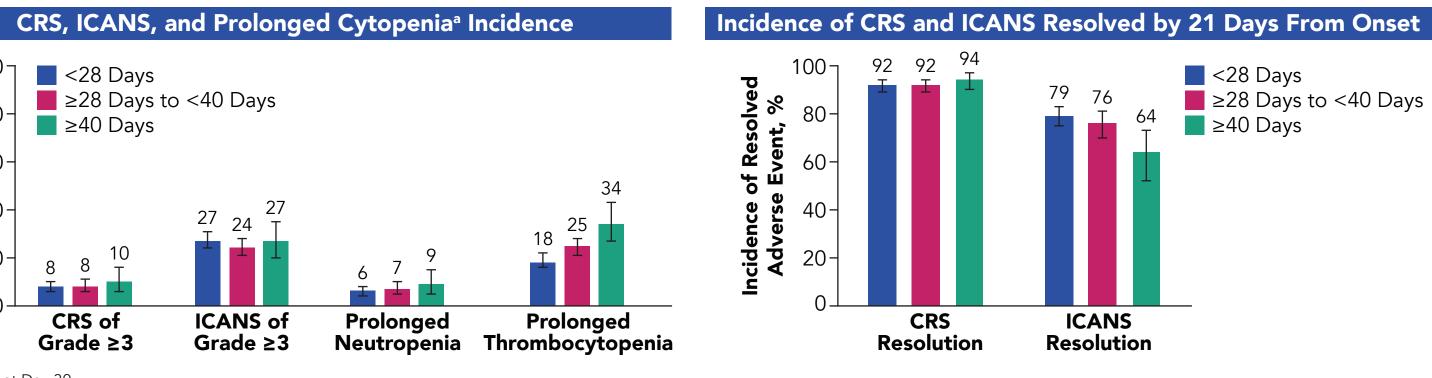
For PFS, subsequent cellular therapy and hematopoietic cell transplantation were censored. Covariates for step-wise selection and multivariable adjustment: age, sex, race, ethnicity, ECOG performance status prior to infusion, comorbidities (pulmonary, cardiac/cerebrovascular/heart valve disease, hepatic, and renal), histologic transformation, disease characteristics at initial diagnosis (double/triple hit, disease stage, elevated LDH and >1 extranodal involvements), chemosensitivity prior to infusion, number of prior lines of therapy, prior HCT, year of infusion, time from initial diagnosis to infusion, and use of bridging therapy. Axi-cel, axicabtagene ciloleucel; d, day; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; HCT, hematopoietic cell transplantation; HR, hazard ratio; LDH, lactate dehydrogenase; OS, overall survival; PFS, progression-free survival.

• Adjusted progression-free survival (PFS), overall survival (OS), and duration of response (DOR) analyses based a stratified Cox model^{10,11} were conducted to balance differences in baseline characteristics (**Figure 4**)

- Sensitivity analyses comparing outcomes for patients with vein-to-vein time <36 days versus \geq 36 days were also carried out to assess the validity of the vein-to-vein time categorization used in the primary analysis

• Among patients who achieved CR/partial response (PR) as best response, DOR at 12 months was 61% for patients with vein-to-vein time of <28 days, 60% for vein-to-vein time of \geq 28 to <40 days, and 61% for vein-to-vein time of \geq 40 days

- Sensitivity analyses for DOR were consistent with the primary analyses

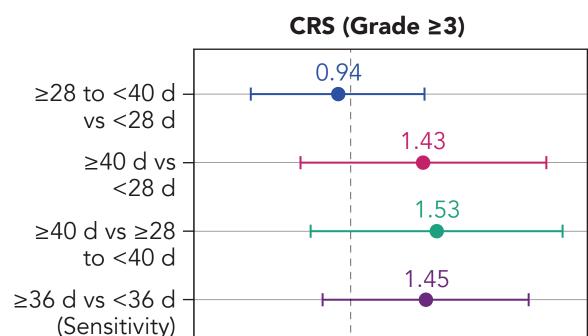

• Adjusted PFS and OS at 24 months appeared lower for patients with vein-to-vein time ≥40 days versus patients with vein-to-vein time of <28 days or ≥28 days to <40 days

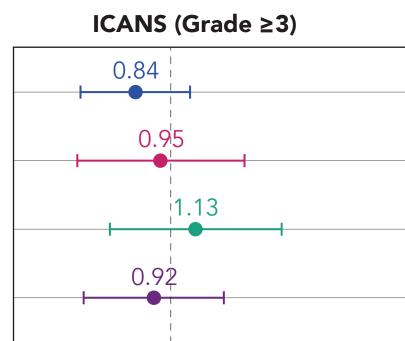
- Sensitivity analyses for OS and PFS were consistent with the primary analyses, with OS being significantly shorter for patients with veinto-vein time \geq 36 days compared with patients with vein-to-vein time < 36 days (hazard ratio [HR], 1.25 [95% CI, 1.02-1.53])

• After other key prognostic factors were adjusted, patients with vein-to-vein time ≥ 40 days had a significantly lower OS compared with patients with shorter vein-to-vein time based on an unstratified Cox model

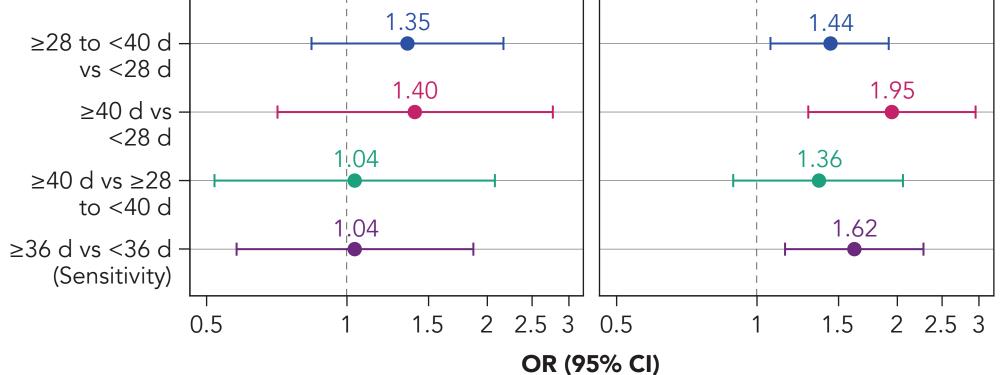
- ≥40 days versus <28 days: HR, 1.33 (95% CI, 1.05-1.70)</p>

− ≥40 days versus ≥28 to <40 days: HR, 1.36 (95% CI, 1.06-1.74)


• Grade \geq 3 cytokine release syndrome (CRS),¹³ immune effector cell-associated neurotoxicity syndrome (ICANS),¹⁴ and prolonged neutropenia were consistent regardless of vein-to-vein time (**Figure 5**)


- Patients with longer vein-to-vein time were increasingly more likely to experience prolonged thrombocytopenia

• Most CRS and ICANS were resolved by 21 days from onset regardless of vein-to-vein time



igure 6. Multivariable Analyses of Axi-Cel	Safety Outcomes
--	-----------------

Prolonged Thrombocytopenia Prolonged Neutropeni

Covariates for step-wise selection and multivariable adjustment: age, sex, race, ethnicity, ECOG performance status prior to infusion, comorbidities (pulmonary, cardiac/cerebrovascular/heart valve disease, hepatic, and renal), histologic transformation, disease characteristics at initial diagnosis (double/triple hit, disease stage, elevated LDH and > 1 extranodal involvements), chemosensitivity prior to infusion, number of prior lines of therapy, prior HCT, year of infusion, time from initial diagnosis to infusion and use of bridging therapy. Axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; d, day; ECOG, Eastern Cooperative Oncology Group; HCT, hematopoietic cell transplantation; ICANS, immune effector cell-associated neurotoxicity syndrome; LDH, lactate dehydrogenase; OR, odds ratio.

- In multivariable analyses of safety outcomes, Grade \geq 3 CRS and ICANS were not significantly different between patients with vein-to-vein time <28 days versus \geq 28 to <40 days (**Figure 6**) - Patients with vein-to-vein time <28 days had more ICANS of any grade compared with those with \geq 28 to <40 days vein-to-vein time (OR 1.34 [95% Cl 1.06-1.71]; data not shown)
- Among patients alive at Day 30, higher rates of prolonged thrombocytopenia compared with those with <28 days vein-to-vein time were seen in: - Patients with vein-to-vein time \geq 28 to <40 days (OR 1.44 [95% CI 1.07-1.92])
- Patients with vein-to-vein time \geq 40 days (OR 1.95 [95% CI 1.29-2.95])

CONCLUSIONS

- In this real-world analysis, most patients with R/R LBCL received axi-cel infusion within 5 weeks after leukapheresis
- Shorter vein-to-vein time was associated with a favorable CR rate, OS, and reduced risk of prolonged thrombocytopenia even after adjustment of key prognostic factors; however, ICANS of any grade may be higher among patients with vein-to-vein time <28 days
- Overall, these findings demonstrate improvements in outcomes with shorter vein-to-vein times in patients treated with axi-cel
- While the findings highlight the importance of shortening vein-to-vein times, additional studies are needed to identify factors that may lead to infusion delays

REFERENCES

- 1. YESCARTA[®] (axicabtagene ciloleucel) [Prescribing information]. Kite Pharma, Inc; 2022. 2. YESCARTA® (axicabtagene ciloleucel) [summary of product characteristics].
- Amsterdam, The Netherlands: Kite Pharma EU B.V.; 2021. 3. Neelapu S, et al. Blood Adv. 2021;5:4149-4155.
- 4. Locke F, et al. N Engl J Med. 2022;386:640-654 5. Riedell PA, et al. Transplant Cell Ther. 2022;S2666-6367:01474-01479.
- 6. Abramson JS, et al. Lancet. 2020;396:839-852. 7. Kamdar MK, et al. Lancet. 2022;399:2294-2308

ACKNOWLEDGMENTS

- The patients, families, friends, and caregivers
- This study was funded by Kite, a Gilead Company
- 8. Sehgal A, et al. Lancet Oncol. 2022;23:1066-1077 9. Chen AJ, et al. Value Health. 2022;25:1344-1351
- 10. Sorror, ML, et al. Blood. 2005;106(8): 2912-2919. 11. Chang IM, et al. J Chronic Dis. 1982;35:669-674.
- 12. Gail MH and Byar DP. Biom J. 1986;28:587-599. 13. CRS grade based on criteria from: Lee, D. W., et al. Blood.
- 2014;124(2):188-195. 14. ICANS grade based on criteria from: Lee, D. W., et al. Biol Blood Marrow Transplant. 2019;25(4):625-638.
- The study investigators, coordinators, and health care staff at each study site • The CIBMTR[®] is a research collaboration between the National Marrow Donor Program[®]/Be The Match[®] and Medical College of Wisconsin, and operates the Cellular Immunotherapy Data Resource (CIDR); research funding is received from the National Cancer Institute (U24 CA233032) • Medical writing support was provided by Edward Sheetz, PhD, of Nexus Global Group Science, funded by Kite, a Gilead Company

DISCLOSURES

Copies of this presentation obtained through Quick Response Code are for personal use only and may not be reproduced without permission from ASH[®] or the authors of this poster.

Full author disclosures are available through the Quick Response (QR) code