

Feasibility and Safety of Outpatient Administration of Chimeric Antigen Receptor T-cell Therapy: A Systematic Literature Review of Early U.S. Experience

Nausheen Ahmed,¹ Usuma Gergis,² Christopher Dieyi,³ Babatunde Adedokun,³ Clare Spooner,³ Christine Fu,³ Fang Sun,³ and Javier Munoz⁴

¹The University of Kansas Cancer Center, Kansas City, KS, USA; ²Thomas Jefferson University Hospital, Philadelphia, PA, USA; ³Kite, a Gilead Company, Santa Monica, CA, USA; and ⁴Mayo Clinic, Phoenix, AZ, USA

BACKGROUND

 Chimeric antigen receptor (CAR) T-cell therapy has shifted the treatment paradigm for several hematological malignancies, including large B-cell lymphoma (LBCL)¹

EBMT

- Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 CAR T-cell therapy approved for the treatment of relapsed or refractory LBCL^{2,3}
- Historically, CAR T-cell therapy was largely administered inpatient due to the risk of serious adverse events (AEs), such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS)⁴

METHODS

Figure 1. SLR Study Design

SLR Data Source

Embase and PubMed databases were searched to identify observational US studies published between January

Variables Extracted From Study Reports

 Patient population: baseline demographics and characteristics, CAR T-cell treatment received, and median follow-up time

RESULTS

Figure 2. SLR Attrition Flow Diagram

administering axi-cel in the outpatient setting (**Figure 2**)

Total number of publications identified: 405
Embase: 362
PubMed: 43

Excluded: 331Duplicated information: 114

- However, optimization of AE management strategies made since the approval of axi-cel have improved its safety profile and may enable adoption of outpatient administration of CAR T-cell therapy⁵
- Outpatient administration of CAR T-cell therapy may improve health system capacity, resource utilization, and treatment access, supporting the increasing need for delivery of the therapy in this setting⁴; thus, it is important to determine the feasibility and safety of CAR T-cell therapy administration in the real-world United States (US) setting

OBJECTIVE

 To conduct a systematic literature review (SLR) to understand the feasibility, safety, and healthcare resource utilization (HRU) related to outpatient CAR T-cell therapy in the US real-world setting with a focus on axi-cel

Axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; SLR, systematic literature review; US, United States.

RESULTS

Table 1. Summary of HRU, Safety and Effectiveness Outcomes for CAR T-cell Therapy Outpatient Programs

Outpatient Program Information		Patient Characteristics				HRU Outcomes					Safety and Effectiveness Outcomes							
Centerª	Practice Details	N (treatment)	Median Follow-up, days	Median Age, years	ECOG PS ≥1, %	Inpatient Admission, n (%)	Time to Admission (or Fever), days	Admission (or Fever) Within 72 Hours, n (%)	Main Reason for Admission (n)	Median Length of Stay, days	All Grade/ Grade ≥3 CRS, %/%	Any Grade CRS Median Onset/ Duration	All Grade/ Grade ≥3 ICANS, %/%	Any Grade ICANS Median Onset/ Duration	Tocilizumab/ Corticosteroid Use Among All Treated	Death, n (%)	Reason for Death	ORR/CR Rate, %/%
Mayo Rochester ⁶	HBO practice: Lymphodepletion and CAR T-cell infusion in the HBO with daily monitoring until Day 7 and, thereafter as needed, until need for admission	64 (all axi-cel)	≥30	55-59	44	59 (92)	2	NR	Fever (51)	8	NR/NR	NR	NR/NR	NR	NR	0 (0), within 30 days post-infusion	NA	NR/NR
Mayo Rochester ⁷	HBO practice: Lymphodepletion and CAR T-cell infusion in the HBO setting with daily monitoring until Day 7 and, thereafter as needed, until need for admission	39 (axi-cel: 7 brexu-cel: 7 ide-cel: 3 cilta-cel: 22)	≥30	65	ECOG ≥2: 0	32 (82)	1	NR	Fever (25)	7.5	79/3	NR	38/15	NR	Toci: 67% Corticosteroid: <1%	2 (5), within 30 days post-infusion	Toxicity	NR/NR
Vanderbilt ⁸	Twice-daily outpatient monitoring for 14 days post-infusion; 1 overnight remote visit via telemedicine	13 (axi-cel: 9 brexu-cel: 4)	389	64	69	10 (77)	3.9	3 (23)	NR	7	92/0	Onset: 93.5 hours Duration: 3 days	54/15	NR	Toci: 69%	4 (31)	Relapse	NR/NR
University of Oklahoma HSC ⁹	Daily outpatient monitoring for 14 days post-infusion; 3 visits per week from Days 15-28	21 (axi-cel: 13 tisa-cel: 6 brexu-cel: 1 liso-cel: 1)	NR	NR	NR	15 (71)	4	5 (24)	Fever (13), neurologic symptoms (2)	8	57/5	NR	29/5	NR	Toci: 33% Corticosteroid: 33%	6 (29)	Progression: 4 Infection: 2	At 6 months: 62/62
South Carolina ¹⁰	Preemptive hospitalization on Day 0 after infusion, or daily follow-up	32 (axi-cel, brexu-cel, ide-cel total)	NR	NR	ECOG=2, 1 (3%)	28 (87.5)	2	27 (84.5)	NR	14	78/3	Onset: 2 days Duration: 3 days	38/16	Onset: 10 days Duration: 2 days	NR	3 (9)	NR	At 90 days: 72/63
Johns Hopkins ^{11,b}	Daily outpatient monitoring for 14 days post-infusion	47 (axi-cel: 29 tisa-cel: 10 brexu-cel: 8)	364	52-70	73	39 (83)	2-4	18 (38)	NR	7-10	74/2	Onset: NR Duration: 4-4.5 days	34/13	Duration: 5-10 days	Toci: 53%	0 (0)	NA	At 30 days: 47/19
Sarah Canon ¹²	Remote patient monitoring (biometrics, clinical pathway questions)	>40 (axi-cel included)	≥30	NR	NR	26 (NR)	NR	NR	NR	NR	~65/0	NR	35/0	NR	NR	NR	NA	NR/NR
City of Hope ¹³	Patient education, caregiver availability, 30 minutes distance from hospital for first 14 days, and 2 hours for the remaining 28 days	NR (axi-cel included)	NR	NR	NR	NR	NR	NR	NR	NR	NR/NR	NR	NR/NR	NR	NR	NR	NR	NR/NR
Intermountain Healthcare ¹⁴	Daily triage visits and twice weekly visits with an advance practice provider	20 (axi-cel: 3 brexu-cel: 1 tisa-cel: 2 liso-cel: 14)	≥100	70	NR	10 (50)	NR	0 (0)	CRS (9)	NR	55/5	NR	45/20	NR	NR	2 (10)	Progression: 1 Infection: 1	NR/NR
Swedish Cancer Institute, Prisma Health, Jewish Hospital ¹⁵	NR	51 (axi-cel: 23, brexu-cel: 4, liso-cel: 10, tisa-cel: 14)	≥30	65	NR	39 (75)	3	21 (40)	CRS (22)	5	39/0	NR	45/8	NR	Toci: 43%	NR	NR	NR

^a Practice guidelines may vary by institution and change over time. ^b Presented results separately for ages <65 and ≥65 years. For medians, when the estimates could not be pooled, the data were reported as a range.

Axi-cel, axicabtagene ciloleucel; brexu-cel, brexucabtagene autoleucel; CAR, chimeric antigen receptor; cilta-cel, ciltacabtagene autoleucel; CR, complete response, CRS, cytokine release syndrome; ECOG PS, Eastern Cooperative Oncology Group performance score; HBO, hospital-based outpatient; HRU, healthcare resource utilization; HSC, Health Science Center; ICANS, immune effector cell-associated neurotoxicity syndrome; ide-cel, idecabtagene vicleucel; liso-cel, lisocabtagene maraleucel; ORR, objective response rate; NA, not applicable; NR, not reported; tisa-cel, tisagenlecleucel; toci, tocilizumab.

RESULTS

Outpatient Program Information and Patient Characteristics (Table 1)

• Early real-world US experience suggests that administering

• Limitations of this study include a small number of studies

- Most outpatient CAR T-cell therapy programs typically included a multidisciplinary team to coordinate patient care and monitored patients on-site or close to treatment centers for ≥14 days post-infusion; wearable devices or telemedicine were utilized by some
- Education of hospital staff, patients, and caregivers was a common practice, while some centers reported availability of nursing services 24 hours a day, 7 days a week for triage and admission, when needed
- Most studies reported outcomes pooled across multiple CAR T-cell therapies
- Median age of patients ranged from 52-70 years with ≥30 days of follow-up, where reported across studies

HRU Outcomes (Table 1)

- Reported post-infusion hospital admission rates ranged from 50%-92% with time to admission or fever ranging from 1-4 days and median length of stay ranging from 5-14 days
- Admission rates within 72 hours ranged from 23%-85%, where reported across studies

Safety and Effectiveness Outcomes (Table 1)

- Rates of any grade and Grade ≥3 CRS ranged from 39%-92% and 0%-5%, respectively
- Rates of any grade and Grade ≥3 ICANS ranged from 29%-54% and 5%-20%, respectively
- Reported tocilizumab and corticosteroid use ranged from 33%-69% and <1%-33%, respectively; though, limited studies reported these outcomes
- Mortality rates ranged from 0%-31% with the most common reason for death being progression or infection

- CAR T-cell therapy, including axi-cel, in the outpatient setting is feasible and has a comparable safety profile to inpatient infusion¹⁶
- Rates of Grade ≥3 CRS and ICANS were similar to rates from inpatient CAR T-cell therapy
- Mortality was predominantly due to progression and not due to CAR T-cell–related toxicity

REFERENCES

1. Khan, et al. *Eur J Haematol*. 2024;112:6-18.

- 2. YESCARTA® (axicabtagene ciloleucel) Prescribing information. Kite Pharma, Inc; 2023.
- YESCARTA[®] (axicabtagene ciloleucel) [summary of product characteristics]. Amsterdam, The Netherlands: Kite Pharma EU B.V.; 2023.
- 4. Alexander, et al. Transplant Cell Ther. 2021;27:558-570.
- 5. Oluwole, et al. Bone Marrow Transplant. 2024 Jan 4. doi: 10.1038/s41409-023-02169-z. Online ahead of print.
- 6. Bansal, et al. *Transplant Cell Ther*. 2021;27:S1–S488.
- 7. Bansal, et al. *Blood*. 2022;140(Suppl 1):2399-2401.
- 8. Dholaria, et al. *Br J Haematol*. 2022;198:1073-1075.
- 9. Borogovac, et al. Bone Marrow Transplant. 2022;57:1025-1027.
- 10. McGann, et al. Transplant Cell Ther. 2022;28:583-585.
- 11. Ly, et al. *Br J Haematol*. 2023;203:688-692.
- 12. Carelock, et al. Transplant Cell Ther. 2023;29(2 Suppl):S81-S82.
- 13. Peterson, et al. *Transplant Cell Ther*. 2023;29(2 Suppl):S85.
- 14. Kirby, et al. *Transplant Cell Ther*. 2023;29(2 Suppl):S189-S190.
- 15. Patel, et al. Transplant Cell Ther. 2023;29(2 Suppl):S207.
- 16. Jacobson, et al. *Transplant Cell Ther*. 2022;28(3 Suppl):S181-S182.

selected in the SLR, small sample sizes, and heterogenous data reported across all studies and CAR T-cell therapies

 Literature on the outpatient CAR T-cell therapy clinical experience is limited to mostly single institution reports; thus, more multicenter studies are needed to further understand and optimize the safety of outpatient CAR T-cell practice

ACKNOWLEDGMENTS

The patients, families, friends, and caregivers

CONCLUSIONS

- The study investigators, coordinators, and health care staff at each study site
- Medical writing support was provided by Ashly Pavlovsky, PhD, of Nexus Global Group Science LLC, funded by Kite, a Gilead Company
- This study was funded by Kite, a Gilead Company

DISCLOSURES

CF: employment with Kite, a Gilead Company; stock or other ownership in Amgen and Gilead Sciences; and patents, royalties, and other intellectual property in Cellares.

Full author disclosures are available through the Quick Response (QR) code.

Copies of this presentation obtained through QR code are for personal use only and may not be reproduced without permission from the author of this poster.

FULL AUTHOR DISCLOSURES

NA: consulting/advisory role for Bristol Myers Squibb; and research funding from Kite, a Gilead Company. UG: employment with Thomas Jefferson Univeristy; stock or other ownership in Gamida Cell and lovance; honoraria from, speakers' bureau participation for, and travel support from Incyte, Jazz Pharmaceuticals, and Kite, a Gilead Company; and consulting/advisory role for Gamida Cell and Jazz Pharmaceuticals. CD: former employment with Kite, a Gilead Company; and stock or other ownership in Gilead Sciences. **BA:** Kite, a Gilead Company. **CS:** employee with Kite, a Gilead Company; and stock or other ownership in Gilead Sciences. CF: employment with Kite, a Gilead Company; stock or other ownership in Amgen and Gilead Sciences; and patents, royalties, and other intellectual property in Cellares. FS: employment with Kite, a Gilead Company; and stock or other ownership in Gilead Sciences. JM: honoraria from Curio Science, Kyowa, OncView, Physicians' Education Resource, Targeted Oncology, and Seagen; consulting/advisory role for ADC Therapeutics, Alexion, Bayer, BeiGene, Bristol Myers Squibb, Debiopharm, Epizyme, Fosun Kite, Genmab, Innovent, Janssen, Juno/Celgene, Karyopharm, Kite, a Gilead Company, Kyowa, Lilly/Loxo, MEI, MorphoSys/Incyte, Novartis, Pfizer, Pharmacyclics/AbbVie, Seagen, Servier, TG Therapeutics, and Zodiac; speakers' bureau participation for Acrotech/Aurobindo, AstraZeneca, Bayer, BeiGene, Celgene/Bristol Myers Squibb, Genentech/Roche, Kite, Kyowa, Pharmacyclics/Janssen, Seagen, and Verastem; and research funding from Bayer, Celgene, Genentech, Incyte, Janssen, Kite, Merck, Millennium, Pharmacyclics, Portola, and Seagen.