Improved Overall Survival With Axicabtagene Ciloleucel vs Standard of Care in Second-Line Large B-Cell Lymphoma Among the Elderly: A Subgroup Analysis of ZUMA-7

Marie José Kersten, MD, PhD¹; Umar Farooq, MD²; Aaron Rapoport, MD³; Frederick Locke, MD⁴; Lori Leslie, MD⁵; Armin Ghobadi, MD⁶; David Miklos, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, MD, PhD¹⁰; Samantha Jaglowski, MD, MPH¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, MD, PhD¹⁰; Samantha Jaglowski, MD, MPH¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, MD, PhD¹⁰; Samantha Jaglowski, MD, MPH¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, MD, PhD¹⁰; Samantha Jaglowski, MD, MPH¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, MD, PhD¹⁰; Samantha Jaglowski, MD, MPH¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, MD, PhD¹⁰; Samantha Jaglowski, MD, PhD¹⁰; Samantha Jaglowski, MD, PhD¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, MD, PhD¹⁰; Samantha Jaglowski, MD, PhD¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, PhD¹⁰; Samantha Jaglowski, MD, PhD¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, PhD¹⁰; Samantha Jaglowski, MD, PhD¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, PhD¹⁰; Samantha Jaglowski, MD, PhD¹¹; Ian Flina, MD, PhD¹²; Tom van Meerten, MD, PhD¹³; and Flina, PhD¹⁰; and Flina, PhD¹¹; and Flina, PhD¹²; and Flina, PhD¹³; and Flina, PhD¹³; and Flina, PhD¹³; and Flina, PhD¹¹; and Flina, PhD¹²; and Flina, PhD¹³; and Flina, PhD¹³; and PhD¹³; and PhD¹³; and PhD¹⁴; and PhD¹⁴ Miguel-Angel Perales, MD¹⁴; Peter Vandenberghe, MD, PhD¹⁵; Simone Filosto, PhD²⁰; Shilpa A. Shahani, MD²⁰; Christina To, MD²⁰; and Jason Westin, MD, MS, FACP²¹ Simone Filosto, PhD²⁰; Shilpa A. Shahani, MD²⁰; Christina To, MD²⁰; and Jason Westin, MD, MS, FACP²¹ Simone Filosto, PhD²⁰; Shilpa A. Shahani, MD²⁰; Christina To, MD²⁰; Christina To, MD²⁰; and Jason Westin, MD, MS, FACP²¹ Simone Filosto, PhD²⁰; Shilpa A. Shahani, MD²⁰; Christina To, MD²⁰; Christina To, MD²⁰; Simone Filosto, PhD²⁰; Shilpa A. Shahani, MD²⁰; Christina To, MD²⁰; Shilpa A. Shahani, MD²⁰; Christina To, MD²⁰; Shilpa A. Shahani, MD²⁰; Shilpa A. S

BACKGROUND

Poster

1761

- The median age at large B-cell lymphoma (LBCL) diagnosis is 66 years, and outcomes worsen with increasing age¹
- Older patients with relapsed or refractory (R/R) LBCL are often deemed ineligible for curative-intent autologous stem cell transplantation (ASCT) due to age and concern for increased toxicity related to comorbidities^{2,}
- For these reasons, new treatment options are needed
- Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved in many countries for the treatment of LBCL that was refractory to first-line treatment or that had relapsed within 12 months after first-line chemoimmunotherapy and for R/R LBCL after ≥2 lines of systemic therapy^{4,5}
- In ZUMA-7 (NCT03391466), the first randomized, global, multicenter, Phase 3 study of axi-cel versus standard of care (SOC; Figure 1) as second-line treatment in patients with early R/R LBCL, axi-cel showed significantly improved event-free survival (EFS) compared with second-line SOC (hazard ratio [HR], 0.398, P<.0001; median 8.3 versus 2.0 months, respectively; 24-month EFS rate: 41% versus 16%, respectively: 24.9-month median follow-up)⁶
- Similar findings were observed among patients aged ≥65 years, whereby axi-cel was safely administered and resulted in improved EFS, response rates, and quality of life compared with SOC⁷
- At a median follow-up of 47.2 months, results from the ZUMA-7 primary overall survival (OS) analysis demonstrated superior OS in the intention-to-treat population (HR, 0.726; 95% CI, 0.540-0.977; one-sided *P*=.0168)⁸

OBJECTIVE

To present updated efficacy and safety results from the primary OS analysis among ZUMA-7 patients aged ≥65 years and ≥70 years

METHODS

Figure 1. ZUMA-7 Study Schema and Endpoints⁶

^a Refractory disease was defined as no CR to 1L therapy; relapsed disease was defined as CR followed by biopsy-proven disease relapse <12 months from completion of 1L therapy. ^b Axi-cel patients underwent leukapheresis followed by lymphodepleting chemotherapy with cyclophosphamide (500 mg/m²/day) and fludarabine (30 mg/m²/day) 5, 4, and 3 days before receiving a single axi-cel infusion (target intravenous dose, 2×10⁶ CAR T cells/kg). ^c Protocol-defined SOC regimens included R-GDP, R-DHAP, R-ICE, or R-ESHAP. ^d EFS was defined as time from randomization to the earliest date of disease progression per Lugano Classification,¹⁰ commencement of new lymphoma therapy, or death from any cause. 1L, first line; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; EFS, event-free survival; HDT-ASCT, high-dose chemotherapy with autologous stem cell transplantation; IPI, International Prognostic Index; LTFU, long-term follow-up; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; PRO, patient-reported outcome; R-DHAP, rituximab, dexamethasone, cytarabine, and cisplatin; R-ESHAP, rituximab, etoposide, methylprednisolone, cytarabine, and cisplatin; R-GDP, rituximab, gemcitabine, dexamethasone, and cisplatin; R-ICE, rituximab, ifosfamide, carboplatin, and

PROs

etoposide; R/R LBCL, relapsed/refractory large B-cell lymphoma; SOC, standard of care.

• OS

- In ZUMA-7, eligible patients were randomized 1:1 to axi-cel or SOC, and the primary OS analysis occurred 5 years after the first patient was randomized (01/25/2018) per protocol (**Figure 1**)
- A planned subgroup analysis of patients aged ≥65 years was conducted in addition to further analysis for those aged ≥70 years
- Multivariate analyses were performed to examine treatment efficacy with axi-cel compared with SOC after adjusting for multiple covariates, including sex, disease type, molecular subgroup, lactate dehydrogenase (LDH), tumor burden, and age
- Strata for these analyses included second-line age-adjusted International Prognostic Index (sAAIPI), and relapsed versus refractory disease
- Exploratory analyses were conducted to determine the association between OS and axi-cel product characteristics for patients aged \geq 65 years
- The percentage of T cells was divided into subgroups based on median value
- Stratified Cox regression models were used to provide the estimated HR and 2-sided 95% CI for high percentage (>median) relative to low percentage (≤median) of naive T cells (juvenile/stem memory phenotype; CCR7+CD45RA+)

Character Median aq Sex, male, **Disease sta Derived sAA** Response t Primary re Relapse ≤ **Disease typ** DLBCL not

T-cell/histic Large cel

HGBL with BCL6 rear Elevated LI

he time of randomization via Interactive Voice/Web Response System. b LDH level greater than upper limit of normal per local laboratory reference range. 1L, first line; axi-cel, axicabtagene ciloleucel; DLBCL, diffuse large B-cell lymphoma; HGBL, high-grade B-cell lymphoma; LBCL, large B-cell lymphoma; LDH, lactate dehydrogenase; sAAIPI, second-line age-adjusted

RESULTS

Table 1. Baseline Patient and Disease Characteristics Among Elderly Patients

tic	Axi-Cel, ≥65 Years N=51	SOC, ≥65 Years N=58	Overall, ≥65 Years N=109
, years (range)	70 (65-80)	69 (65-81)	69 (65-81)
ו (%)	28 (55)	39 (67)	67 (61)
ge III-IV, n (%)	42 (82)	44 (76)	86 (79)
AIPI total score of 2, n (%)	27 (53)	18 (31)	45 (41)
o 1L therapy,ª n (%)			
fractory	37 (73)	39 (67)	76 (70)
12 months of 1L therapy	14 (27)	19 (33)	33 (30)
e per investigator, n (%)			
t specified	27 (53)	40 (69)	67 (61)
ocyte-rich LBCL	0 (0)	1 (2)	1 (1)
transformation from follicular lymphoma	7 (14)	9 (16)	16 (15)
or without MYC and BCL2 and/or rangement	17 (33)	8 (14)	25 (23)
H ^b level	31 (61)	24 (41)	55 (50)

• A total of 109 patients aged ≥65 years were included in the ZUMA-7 elderly subgroup analysis (Table 1) - In the axi-cel arm, 51 patients were aged ≥65 years, 26 of whom were aged ≥70 years, and the maximum age was 80 years - In the SOC arm, 58 patients were aged ≥65 years, 27 of whom were aged ≥70 years, and the maximum age was 81 years - Compared with SOC patients at baseline, more axi-cel patients had high-risk features, including sAAIPI 2-3, elevated LDH, and high-grade B-cell lymphoma

													alle	FIIR		yeu			als													
	100 -		_		_													Axi	-Ce	I (N	=26))	soc	; (N:	=27)	Str	atifi	ied I	HR (95%	6 CI)
			4	٦,			٩.			N	ledi	an C	DS ((95%	6 CI), m	0	24.	7 (1	2.8-	NE)		11.2	(6.1	-NE)	0	.330) (0.	135-	0.80)9)
%	80 -			٦			l	~_																								
vival,	60 -					L	٦.		l	_																						
Sun							4	۲.,		L				~	~																	
rall	40-								~														+	╏╓	-11	4	-	+ +		+		
Ve											OS	Esti	mat	e, %					_													
0	20-						1	-Yea	r	2	-Yea	r		3-Yea	ar		4-Ye	ar														
			Axi-(Cel (N=20	6)		73.1			50.0			42.3	3		38.	1														
	0-		SO	C (N	=27)			46.3			38.6			38.6	6		34.	7														
	Ū	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60
																	Мо	nths														
	No.	. at F	Risk																													
Ах	i-Cel	26	26	26	26	25	22	19	15	14	14	14	14	13	12	12	11	11	11	11	11	11	10	8	5	4	3	3	1	0		
	SOC	27	26	23	19	17	14	12	11	10	10	10	10	10	10	10	10	10	10	10	9	9	6	3	3	1	1	0				
xi-cel, a	xicabtag	jene ci	iloleuce	el; HR,	hazar	d ratio	; NE, r	not esti	imable	; OS, d	verall	surviv	al; SO)C, sta	ndard	of care	Э.															

 At a median follow-up of 46.6 months, OS was prolonged in the axi-cel versus SOC arm in patients aged ≥65 years (HR, 0.691; 95% CI, 0.401-1.190) and for those ≥70 years (HR, 0.330; 95% CI, 0.135-0.809; **Figure 2**)

- Similar results were observed using the piecewise Cox regression model (not shown)

• For patients aged ≥65 years, the median OS in the axi-cel arm was 43.5 months (95% CI, 20.9-not estimable [NE]) and 19.5 months (95% CI. 12.3-NE) in the SOC arm • For patients aged ≥70 years, the median OS for axi-cel was 24.7 months (95% CI, 12.8-NE) and 11.2 months (95% CI, 6.1-NE) for SOC

• In the SOC arm, 57% and 52% of patients received subsequent cellular immunotherapy off protocol in patients aged ≥65 years and ≥70 years, respectively • Sensitivity analysis adjusting for treatment switching in the SOC arm confirmed the OS benefit with axi-cel versus SOC for patients

≥65 years (HR, 0.449; 95% CI, 0.255-0.792)

• Multivariate analyses demonstrated an even greater OS benefit with axi-cel over SOC when adjusting for differences in baseline characteristics in patients aged ≥65 years (HR, 0.526; 95% CI, 0.266-1.041) and in patients aged ≥70 years (HR, 0.184; 95% Cl, 0.045-0.755)

												Р	atie	ente	s Ag	jed	≥7() Ye	ars													
																		A	ci-Co	el (N	1=26	5)	SO	C (N	1=2 7	7)	St	ratif	fied	HR	(95%	CI
•	100-	+								Μ	edia	n P	FS	(95%	∕₀ CI), m	0	1	1.4 ((4.1-	-NE))	2.7	(1.7	7-5.0))	(0.20	6 (0	.078	-0.547	7)
'al, %	00		┖╴	٦																			PFS	Esti	mate	e, %						
<u><</u> i	80-		Ŧ	١.															1-Yea	ar		2-`	Year			3-Ye	ar		4-`	Year		
Sul			Ч	ጓ									Α	xi-C	el (N	=26)			50.0)		4	2.3			38.	5		3	2.1		
ê Î	60-		٦,											500	; (N=	27)			8.4			ξ	3.4			8.4			ſ	NE		
sion-Fre	40-		1	L	1			_		~														L								
rogres	20-			1	t_																L											
٩	0-																				•											
	C	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58 6	0
		Ŭ	-	•	Ũ	U	10		• •	10	10	20			20	20	Moi	nths	;	00	00	10	12		10	10	00	02	01	00	00 0	0
	No.	at F	Risk																													
А	ci-Cel	26	24	19	14	14	14	13	12	11	11	11	11	11	11	11	10	10	10	10	10	10	10	5	4	4	2	2	1	0		
	SOC	27	13	6	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0											

Axi-cel, axicabtagene ciloleucel; HR, hazard ratio; NE, not estimable; PFS, progression-free survival; SOC, standard of care

• For patients aged ≥65 years, the median PFS was 28.6 months (95% CI, 5.1-NE) for the axi-cel arm and was 5.0 months (95% CI, 2.8-7.3) for the SOC arm • For patients aged ≥70 years, the median PFS for axi-cel was 11.4 months (95% CI, 4.1-NE) and 2.7 months (95% CI, 1.7-5.0) for SOC

Table 2. Key Safety Data Among Elderly Patients Since Start of Treatment

	Axi-Cel, ≥65 YearsSOC, ≥65 YearsN=49N=55							
	Any Grade	Grade ≥3	Any Grade	Grade ≥3				
AEs of Interest, n (%)								
CRS	48 (98)	4 (8)	_	_				
Neurologic event	33 (67)	13 (27)	14 (25)	1 (2)				
Hypogammaglobulinemia	10 (20)	0 (0)	1 (2)	0 (0)				
Cytopenia	41 (84)	41 (84)	45 (82)	42 (76)				
Infections	30 (61)	14 (29)	21 (38)	9 (16)				
Reason for Death, n (%)	25	(51)	29 ((53)				
Progressive disease	20	(41)	20 ((36)				
Grade 5 AE during protocol-specific reporting period	2 ((4) ^a	1 (2) ^b				
New or secondary malignancy	1 ((2)°	0 ((0)				
Other reason for death	2 ((4) ^d	8 (1	15) ^e				
Definitive therapy-related mortality	0	(0)	1 (2) ^f				

Figure 3. PFS of Axi-Cel Versus SOC in Patients Aged ≥65 Years and ≥70 Years

• PFS assessed by investigator confirmed benefit of axi-cel over SOC in patients aged ≥65 years (HR, 0.406; 95% CI, 0.230-0.715) and in patients aged ≥70 years (HR, 0.206; 95% CI, 0.078-0.547; **Figure 3**)

assessment to lymphodepleting chemotherapy and axi-cel (n=1). • Due to COVID-19 (n=4), cardiopulmonary arrest, subarachnoid hemorrhage and subdural hematoma (n=1), sepsis (n=1), urosepsis (n=1), and unknown cause of death (n=1). ^f Due to cardiac arrest. AE, adverse event; axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; SOC, standard of care.

 The key safety data for this mature analysis of patients ≥65 years are shown in Table 2 for the safety analysis set since start of treatment • No new treatment-related deaths occurred among all patients, irrespective of age, since the primary EFS analysis⁶

• Fewer SOC patients remained in the adverse event (AE) reporting period post-progression or start of new lymphoma therapy; thus, cross-arm comparisons of AE rates warrant cautious interpretation

• There were no manufacturing failures for any patient who underwent leukapheresis

 These findings confirm that age alone should not be a barrier for consideration of CAR T-cell therapy, supporting the use of axi-cel as a curative-intent second-line therapeutic option for elderly patients with R/R LBCL

REFERENCES

• The patients, families, friends, and caregivers • The study investigators, coordinators, and health care staff at each study site • Medical writing support was provided by Christine N. Morrison, PhD, and Laura S. Moye, PhD, ISMPP CMPP^M, of Nexus Global Group Science, funded by Kite, a Gilead Company • This study was funded by Kite, a Gilead Company

Figure 4. Association of OS With the Percentage of Naive T Cells in the Axi-Cel Product for Patients Aged ≥65 Years

 Similar associations between product characteristics and outcomes were observed among the elderly and overall populations⁹ Improved OS was associated with a greater (>median) proportion of naive T cells (juvenile/stem memory phenotype) CCR7+CD45RA+) in the axi-cel product among patients aged \geq 65 years (HR, 0.369; 95% CI, 0.138-0.984; **Figure 4**)

CONCLUSIONS

 Axi-cel as second-line therapy showed prolonged survival over SOC in patients aged ≥65 years, including in patients aged ≥70 years

- In patients aged ≥65 years, improved OS was associated with a greater proportion of naive T cells in the axi-cel product
- Axi-cel had a manageable safety profile that was consistent with previous studies, regardless of age⁸

1. Di M, et al. Oncologist. 2021;26:120-132. 2. Sehn LH, et al. N Engl J Med. 2021;384:842-858. 3. Westin JR and Sehn LH. Blood. 2022;139:2737-2746. YESCARTA[®] (axicabtagene ciloleucel) Prescribing information. Kite Pharma, Inc; 2022. 5. YESCARTA® (axicabtagene ciloleucel) [summary of product characteristics]. Amsterdam, The Netherlands: Kite Pharma EU B.V.; 2022. 6. Locke FL, et al. *N Engl J Med*. 2022;386:640-654. 7. Westin JR, et al. Clin Cancer Res. 2023;29:1894-1905. 8. Westin JR, et al. *N Engl J Med*. 2023;389:148-157. 9. Swerdlow SH, et al. *Blood*. 2016;127:2375-2390. 10. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068

ACKNOWLEDGMENTS

DISCLOSURES

Full author disclosures are available through the virtual meeting platform