Real time, point-of-need measurement of Blood CD19 CAR-T vector load is concordant with standard ddPCR method

Sushma Bharadwaj¹, Courtney J. Smith¹, Jenny Nater³, Saran Vardhanabhuti³, Jayasindhu Mallampet¹, Sarah Elkordy¹, Jing Fang¹, Abigail Twoy¹, Betty Chang¹, Shriya Syal¹, Katrijn Broos², Jan Wuyts², Gorik Braem², Tom Adriany², Bita Sahaf¹, Katherine A. Kong¹, Geert Maertens², Sofie Metsu², Mike Mattie³, Melody Smith¹, Matthew Frank¹, Saurabh Dahiya¹, Rhine Shen³, David B. Miklos¹

¹Stanford University School of Medicine, Stanford, CA 94305, USA. ²Biocartis NV, Mechelen, BE. ³Kite, a Gilead Company, Santa Monica, CA, USA.

Introduction

- CD19-directed chimeric antigen receptor T cell (CAR-T) therapy has revolutionized treatment of non-Hodgkin lymphoma; however, significant toxicities have been associated with CAR-T therapies.
- Peripheral blood quantification of CAR-T vector load may have prognostic value and can aid in toxicity management for large B cell lymphoma (LBCL) patients undergoing axicabtagene ciloleucel (axi-cel) treatment.
- We assessed the concordance of the IdyllaTM platform, a point-of-need (PON), cartridge-based system for real-time assessment of CAR-T vector load from peripheral blood, with standard droplet digital polymerase chain reaction (ddPCR) and flow cytometry (FACS) methods.

Methods

Thirty-nine consecutively enrolled subjects who received axi-cel CAR-T therapy for LBCL were consented on an IRB-approved protocol. 246 samples were collected across the 39 participants according to the schema below.

- CAR-T CD19 Idylla Prototype The is a automated, qPCR based-assay that quantitatively detects CD19 CAR transgene starting from 500µL EDTA peripheral blood.
- ddPCR was used to detect and quantify T cells carrying the anti-CD19 CAR transgene from PBMCs.
- CD19 CAR-T expansion was measured by FACS with anti-idiotype-FMC63 conjugated to Dylight 65013.
- The concordance between Idylla, ddPCR, and FACS analysis was evaluated using Robust Z-score standardization and Bland-Altman analysis.

Results

Stanford MEDICINE Blood and Marrow Transplantation & Cellular Therapy Division

Conclusions		
a c r	 Previous studies of CAR-T expansion have used PCR-based and/or FACS approaches, which require technical laboratory skills and have multi-day turnaround times. The Idylla platform enables fully automated detection of CAR-T vector load, with 2 minutes of hands-on time. Results are reported in ~90 minutes. The concordance between Idylla and ddPCR measures was within the acceptable range (95% of all samples within +/- 2 SD of the mean difference), and also concordant with FACS data. This PON device may ultimately enable standardization of CAR-T vector load measurements across clinical sites, development of predictive algorithms for toxicity, and management of patients showing primary or secondary treatment failure. The peak blood CAR-T vector load and its association to toxicity and efficacy outcomes will be reported in future studies. 	
on of he CR ole SD		
al	 ¹ Neelapu et al, NEJM ² O17, 377:2531-2544. ² Speigel et al, Nature Med 2021, 27:1419–1431. ³ Tsongalis et al, Am J Clin Pathol. 2020, 154:266- 276. ⁴ Al-Turkmani et al, Pract Lab Med 2020, 20:e00156. 	<image/> <image/> <image/> <image/> <image/> <image/> <image/> <text><text></text></text>