Trends and Outcomes by Inpatient and Outpatient Infusion of Axicabtagene Ciloleucel (Axi-Cel) in the US for Patients With Relapsed/Refractory Large B-Cell Lymphoma Fateeha Furqan, MD¹; Michael T. Hemmer, MS²; Michael T. Tees, MD, MPH³; John H. Baird, MD⁴; Jennifer Holter-Chakrabarty, MD⁵; Saurabh Dahiya, MD, FACP8; Frederick L. Locke, MD9; Jiali H. Yan, MS²; Jenny J. Kim, MD²; M. Elena Pizzi, PharmD²; Dafna Bonneh-Barkay, PhD, MSc²; Hil Hsu, PhD, MPH¹; Waleska S. Pérez, MPH¹⁰; Zhongyu Feng, MS¹⁰; Marcelo C. Pasquini, MD, MS¹⁰; and Yi Lin, MD, PhD¹¹ ¹MD Anderson Cancer Center, Houston, TX, USA; ⁴Dept. of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA; ⁴Dept. of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA; ⁴Dept. of Hematology and Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA; ⁴Dept. of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA; ⁴Dept. of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA; ⁴Dept. of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA; ⁴Dept. of Hematology and Hem ⁵Stephenson Cancer Center Center at the University of Oklahoma Health Science Center, Oklahoma Health Science Center, Oklahoma City, OK, USA; ⁸Stanford University, Stanford, CA, USA; ⁹Moffitt Cancer Institute at the University of Oklahoma City, OK, USA; ⁸Stanford University, Stanford, CA, USA; ⁹Moffitt Cancer Institute at the University of Oklahoma City, OK, USA; ⁸Stanford University, Stanford, CA, USA; ⁹Moffitt Cancer Institute at the University of Oklahoma City, OK, USA; ⁸Stanford, CA, USA; ⁹Moffitt Cancer Institute at the University of Oklahoma City, OK, USA; ⁹Moffitt Cancer Institute, Boston, MA, USA; ⁸Stanford University, Stanford, CA, USA; ⁹Moffitt Cancer Institute at the University of Oklahoma City, OK, USA; ⁹Moffitt Cancer Institute, Boston, MA, ⁹Moffit ¹⁰Center for International Blood and Marrow Transplant Research (CIBMTR), Medical College of Wisconsin, Milwaukee, WI, USA; and ¹¹Mayo Clinic, Rochester, MN, USA #### BACKGROUND - Axicabtagene ciloleucel (axi-cel) is an autologous chimeric antigen receptor (CAR) T-cell therapy approved for adults with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) after ≥1 prior line of therapy^{1,2} - In the pivotal ZUMA-7 trial of axi-cel in patients with R/R LBCL after 1 prior line of therapy^{3,4}: - Both event-free and overall survival (OS) were superior to second-line standard of care - Cytokine release syndrome (CRS) occurred in 92% of patients (6% Grade ≥3), and neurologic events occurred in 60% (21% Grade ≥3) - The risk of these commonly occurring CAR T-cell therapy—associated adverse events may deter centers from using axi-cel in an outpatient setting, though observational studies in individual centers have observed comparable safety and effectiveness between outpatient and inpatient care settings⁵ - Improvements in adverse event management with prophylactic steroid use and early intervention may be associated with improved outcomes and increased feasibility of outpatient axi-cel - Additionally, preliminary results of the ZUMA-24 trial of outpatient axi-cel in R/R LBCL found no Grade ≥3 CRS, no Grade 5 neurologic events, a shorter median duration of hospitalization, and lower rates of intensive care unit admission than with previous clinical experience in the inpatient setting⁷ - Efficacy outcomes were consistent with those in trials in the inpatient setting #### **OBJECTIVE** To evaluate real-world safety and effectiveness outcomes in patients with R/R LBCL by intention to treat with axi-cel in outpatient and inpatient settings #### **METHODS** #### Figure 1. Study Design and Analysis #### **Data Source** - Data collected from the CIBMTR observational database Study population: consenting adult patients with R/R LBCL after - ≥1 prior line of therapy receiving axi-cel in the US (between July 2021 and November 2023) - Those with prior non-transplant cellular therapy, prior alloHCT, or unknown care setting intention were excluded #### **Outcomes of Interest** - Safety: CRS and ICANS, hospitalization among patients intended for outpatient administration,^b prolonged cytopenias, clinically significant infections, and causes of death including NRM - Effectiveness: ORR, CRR, DOR, PFS, and OS #### **Statistical Analysis** - Eligible patients intended for the outpatient setting were matched 1:1 to those intended for the inpatient setting by propensity score matching on age, sex, comorbidities, LDH, bulky disease, prior lines of therapy, chemosensitivity, and infusion year (Figure S1)c - Univariable analysis and multivariable logistic regression were used to estimate differences in outcomes by intended care settings in the propensity score-matched datasetd ^a CRS was graded per Lee et al⁸ and ICANS was graded per ASTCT consensus criteria. ⁹ ^b Criteria for hospitalization after axi-cel infusion among patients intended for outpatient care was at the discretion of the institution. c ECOG PS was captured but not considered in the PSM due to small sample size (n=2/119 patients with ECOG PS ≥2 intended for outpatient care) Variables considered for the multivariable analysis were cardiac comorbidities, arrhythmia, diabetes requiring non-dietary treatment in 4 weeks prior to infusion, mild hepatic comorbidities, obesity during pre-infusion workup, psychiatric disturbance requiring consult/treatment in 4 weeks prior to infusion, pulmonary comorbidities (moderate/severe), and severely low BMI alloHCT, allogeneic hematopoietic cell transplantation; ASTCT, American Society for Transplantation and Cellular Therapy; axi-cel, axicabtagene ciloleucel; BMI, body mass index; CIBMTR, Center for International Blood and Marrow Transplant Research; CRR, complete response rate; CRS, cytokine release syndrome; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ICANS, immune effector cell-associated neurotoxicity syndrome; LBCL, large B-cell lymphoma; LDH, lactate dehydrogenase; NRM, non-relapse mortality; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PSM, propensity score matching; R/R, relapsed/refractory; US, United States. #### RESULTS Figure 2. Analysis Population ^a Reasons for exclusion are not mutually exclusive. ^b Missing data included the number of lines of prior therapy (n=2), comorbidity (yes/no, n=2), intended care setting (n=1). AlloHCT, allogeneic hematopoietic cell transplantation; axi-cel, axicabtagene ciloleucel; CLL, chronic lymphocytic leukemia; LBCL, large B-cell lymphoma; R/R, relapsed/refractory. Figure 3. Patients Receiving Axi-Cel With Outpatient Intent by Year Axi-cel, axicabtagene ciloleucel. • An increasing trend in outpatient axi-cel administration was observed over time (Figure 3) Table 1. Baseline Characteristics by Intended Care Setting After Matching^a | Characteristic | Outpatient (N=119) | Inpatient (N=119) | | |--|--------------------|-------------------|--| | Median age, years (IQR) | 63.4 (52.1–70.1) | 64.2 (55.5–72.2) | | | ≥65, n (%) | 52 (44) | 56 (47) | | | ≥70, n (%) ^b | 30 (25) | 42 (35) | | | Male sex, n (%) | 79 (66) | 78 (66) | | | Race and Ethnicity, n (%) ^b | | | | | Non-Hispanic White | 85 (71) | 79 (66) | | | Non-Hispanic Black | 9 (8) | 7 (6) | | | Hispanic or Latino | 10 (8) | 18 (15) | | | Other or not reported | 15 (13) | 15 (13) | | | Clinically significant comorbidity, n (%) ^c | 80 (67) | 73 (61) | | | Bulky disease prior to infusion, n (%)d | 3 (3) | 1 (<1) | | | Elevated LDH prior to infusion, n (%)e | 59 (50) | 63 (53) | | | 1 prior line of therapy, n (%) | 87 (73) | 89 (75) | | | Chemoresistant disease prior to infusion, n (%) | 71 (60) | 75 (63) | | | Lymphodepletion chemotherapy, n (%) ^b | | | | | Cyclophosphamide + fludarabine | 96 (81) | 94 (79) | | | Single-agent bendamustine | 17 (14) | 21 (18) | | | Other | 6 (5) | 4 (3) | | | Year of axi-cel infusion, n (%) | | | | | 2021 | 7 (6) | 7 (6) | | | 2022 | 61 (51) | 62 (52) | | | 2023 | 51 (43) | 50 (42) | | a ECOG PS was captured but not considered in the PSM due to small sample size (n=2/119 patients with ECOG PS ≥2 intended for outpatient care). b Not included in PSM model. c Specific comorbidities included in the PS estimation included cardiac comorbidities, arrhythmia, diabetes requiring non-dietary treatment in 4 weeks prior to infusion, mild hepatic comorbidities, obesity during pre-infusion workup, psychiatric disturbance requiring consult/treatment in 4 weeks prior to infusion, pulmonary comorbidities (moderate/severe), and severely low BMI <20.5 kg/m². List of comorbidities defined per the HCT-specific comorbidity index10 with the addition of low BMI. d Defined as largest size of nodal mass >10 cm. d Upper limit of normal LDH determined at each center. BMI, body mass index; ECOG, Eastern Cooperative Oncology Group; HCT, hematopoietic cell transplantation; LDH, lactate dehydrogenase; PS, performance status; PSM, propensity score matching. Figure 4. Incidence and Univariate Analysis of CRS and ICANS by Intended Care Setting | | CRS | | ICANS | | |--|-----------------------|----------------------|-----------------------|----------------------| | Characteristic | Outpatient
(N=119) | Inpatient
(N=115) | Outpatient
(N=112) | Inpatient
(N=117) | | Median time from infusion to onset, days (IQR) | 4 (3–7) | 4 (2–6) | 7 (5–9) | 7 (5–10) | | Median time from onset to resolution, days (IQR) | 5 (4–6) | 6 (3–8) | 7 (3–10) | 5 (2–7) | | Event resolved, n (%) | 99 (100) | 94 (99) | 49 (92) | 47 (87) | | Cumulative incidence by Week 3, % (95% CI) | 82 (73–88) | 82 (73–88) | 46 (37–55) | 46 (36–55) | | Cumulative resolution by Week 3, % (95% CI) | 98 (91–100) | 99 (88–100) | 89 (76–95) | 83 (69–91) | CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome - The incidence of CRS and immune effector cell-associated neurotoxicity syndrome (ICANS) was similar among intended treatment for inpatient and outpatient settings (Figure 4) - No patient in any setting experienced Grade 5 CRS; 1 patient in each care setting experienced Grade 5 ICANS - Between patients intended for outpatient and inpatient settings, respectively, similar rates of prolonged cytopenias (18%, 18%), clinically significant infections (59%, 47%), and 12-month non-relapse mortalities (6%, 4%) were observed - Among patients intended for outpatient care, 50% were hospitalized within 3 days post-infusion, and the median duration of first admission was 9 days - In a subset matched analysis among patients aged ≥70 years at infusion, outcomes were comparable between the intended care settings, except for a higher any-grade ICANS associated with the intended outpatient setting (Grade ≥3 ICANS was similar between groups) #### Figure 5. Multivariate Analysis of CRS and ICANS CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome. • In the multivariate analyses, no associations were found between intended care setting and CRS nor ICANS (Figure 5) ## **Figure 6. Efficacy Outcomes** CR, complete response; DOR, duration of response; ORR, objective response rate. Median DOR, months (95% CI) 12-month rate, % (95% CI) Median follow-up among the 119 matched patients intended for outpatient care was 12.3 months (95% CI, 12.1–12.7) 64 (52–74) - Among those intended for inpatient care, median follow-up was 12.5 months (95% CI, 12.3–12.6) # CONCLUSIONS - In recent years, axi-cel has been administered more frequently in the outpatient setting, suggesting an increase in feasibility and comfort over time - After matching on key factors, safety and effectiveness outcomes were comparable between patients with R/R LBCL treated with axi-cel intended for outpatient and inpatient settings - Rates of CRS and ICANS, both any-grade and Grade ≥3, were similar between intended settings - Safety outcomes remained comparable after multivariate assessment - These findings corroborate prior real-world results⁵ and support the consideration of axi-cel in appropriate outpatient settings ### PLAIN LANGUAGE SUMMARY Axicabtagene ciloleucel (axi-cel) is an "anticancer" CAR T-cell therapy made from a person's own immune cells. This one-time treatment is usually given to a person during a hospital stay. Doctors can also intend to give it without a hospital stay, which is called outpatient-intended treatment. In that case, the person must go to the hospital if certain side effects happen NR 69 (58–78) - This real-world study looked at how safe and effective outpatient-intended axi-cel worked for people with a blood cancer called large B-cell lymphoma - The number of people who got outpatient-intended axi-cel increased over time - 50% of people who got outpatient-intended axi-cel needed to go to the hospital shortly after treatment - The safety and effectiveness of axi-cel were similar in people who got it without a planned hospital stay and people who got it during a hospital stay Words in **bold text** are defined in the glossary that is accessible through the QR code #### REFERENCES - YESCARTA® (axicabtagene ciloleucel) Prescribing information. Kite Pharma. Inc: 2024. - YESCARTA® (axicabtagene ciloleucel) [summary of product characteristics]. Amsterdam, The Netherlands: Kite Pharma EU B.V.; 2024. Locke FL, et al. *N Engl J Med*. 2022;386:640-654. 4. Westin JR, et al. N Engl J Med. 2023;389:148-157. 5. Furgan F. et al. *Blood Adv.* 2024;8:4320-4329. - 6. Bansal R, et al. EHA 2024. Poster P1191. Leslie LA, et al. EHA 2024. Poster P1159. 8. Lee DW, et al. *Blood*. 2014;124:188-195. - 9. Lee DW, et al. Biol Blood Marrow Transplant. 2019;25:625-638. 10. Sorror ML. *Blood*. 2013;121:2854-2863. # DISCLOSURES Full author disclosures are available through the virtual meeting platform. # ACKNOWLEDGMENTS - The patients, families, friends, and caregivers - · Medical writing support was provided by Danielle Fanslow, PhD, CMPP, of Nexus Global Group Science LLC, funded by Kite - This study was funded by the US National Institutes of Health (NCI Cellular Immunotherapy Data Resource [CIDR]: U24CA233032; and NCI, NHLBI and NIAID for the Resource for Hematopoietic Cell Transplantation and Adoptive Cell Therapy: U24CA076518) and Kite - Dr. Pizzi was an employee of Kite when the study was conducted. Current affiliation: Sanofi This study is a collaboration between CIBMTR and Kite. CIBMTR® is a research collaboration between the Medical College of Wisconsin and NMDPSM Copies of this presentation obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission from ASCO® or the author of this presentation.